Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 295(15): 5136-5151, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32132173

RESUMO

Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a Kd of 0.8 µm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in in vitro assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).


Assuntos
Apolipoproteínas A/antagonistas & inibidores , Apolipoproteínas A/metabolismo , Fibrina/metabolismo , Kringles/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Homologia de Sequência
2.
J Biol Chem ; 292(40): 16665-16676, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28798232

RESUMO

Nerve growth factor-ß (NGF) is essential for the correct development of the nervous system. NGF exists in both a mature form and a pro-form (proNGF). The two forms have opposing effects on neurons: NGF induces proliferation, whereas proNGF induces apoptosis via binding to a receptor complex of the common neurotrophin receptor (p75NTR) and sortilin. The overexpression of both proNGF and sortilin has been associated with several neurodegenerative diseases. Insights into the conformational differences between proNGF and NGF are central to a better understanding of the opposing mechanisms of action of NGF and proNGF on neurons. However, whereas the structure of NGF has been determined by X-ray crystallography, the structural details for proNGF remain elusive. Here, using a sensitive MS-based analytical method to measure the hydrogen/deuterium exchange of proteins in solution, we analyzed the conformational properties of proNGF and NGF. We detected the presence of a localized higher-order structure motif in the pro-part of proNGF. Furthermore, by comparing the hydrogen/deuterium exchange in the mature part of NGF and proNGF, we found that the presence of the pro-part in proNGF causes a structural stabilization of three loop regions in the mature part, possibly through a direct molecular interaction. Moreover, using tandem MS analyses, we identified two N-linked and two O-linked glycosylations in the pro-part of proNGF. These results advance our knowledge of the conformational properties of proNGF and NGF and help provide a rationale for the diverse biological effects of NGF and proNGF at the molecular level.


Assuntos
Fator de Crescimento Neural/química , Precursores de Proteínas/química , Cristalografia por Raios X , Medição da Troca de Deutério , Glicosilação , Humanos , Fator de Crescimento Neural/genética , Domínios Proteicos , Precursores de Proteínas/genética , Estabilidade Proteica , Estrutura Secundária de Proteína
3.
Acta Neuropathol ; 130(5): 699-711, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26433971

RESUMO

Immunotherapy is a promising strategy for the treatment of Alzheimer's disease (AD). Antibodies directed against Amyloid Beta (Aß) are able to successfully clear plaques and reverse cognitive deficits in mouse models. Excitement towards this approach has been tempered by high profile failures in the clinic, one key issue has been the development of inflammatory side effects in the brain (ARIAs). New antibodies are entering the clinic for Alzheimer's disease; therefore, it is important to learn all we can from the current generation. In this study, we directly compared 3 clinical candidates in the same pre-clinical model, with the same effector function, for their ability to clear plaques and induce inflammation in the brain. We produced murine versions of the antibodies: Bapineuzumab (3D6), Crenezumab (mC2) and Gantenerumab (chGantenerumab) with an IgG2a constant region. 18-month transgenic APP mice (Tg2576) were injected bilaterally into the hippocampus with 2 µg of each antibody or control. After 7 days, the mice tissue was analysed for clearance of plaques and neuroinflammation by histology and biochemical analysis. 3D6 was the best binder to plaques and in vitro, whilst mC2 bound the least strongly. This translated into 3D6 effectively clearing plaques and reducing the levels of insoluble Aß, whilst chGantenerumab and mC2 did not. 3D6 caused a significant increase in the levels of pro-inflammatory cytokines IL-1ß and TNFα, and an associated increase in microglial expression of CD11B and CD68. chGantenerumab increased pro-inflammatory cytokines and microglial activation, but minimal changes in CD68, as an indicator of phagocytosis. Injection of mC2 did not cause any significant inflammatory changes. Our results demonstrate that the ability of an antibody to clear plaques and induce inflammation is dependent on the epitope and affinity of the antibody.


Assuntos
Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Fatores Imunológicos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/genética , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno CD11b/metabolismo , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/patologia , Humanos , Interleucina-1beta/metabolismo , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/imunologia , Placa Amiloide/patologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Protein Expr Purif ; 116: 113-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26291269

RESUMO

Transient expression of heterologous proteins in mammalian systems is a powerful way to generate protein reagents quickly. However, it has historically suffered from poor yields in comparison to methods where the recombinant gene is stably integrated into the genome and high expressing clones isolated. Transient methods have been well described for HEK-based systems. In this paper we show the use of a design of experiments (DoE) approach to quickly analyse the effect of a range of different parameters on protein expression from a CHO-based transient system. We show that this system is amenable to a very simple transfection procedure by independent direct addition of DNA and transfection reagent to the culture vessel. In addition we show that expression can be improved by reducing the temperature of the culture conditions post-transfection. The process is demonstrated to be transferrable from 3 ml cultures in deep 24-well plates through cultures in CultiFlask Bioreactors, shake flasks and up to 25 L culture in Wave Bioreactors. Data are shown to illustrate the utility of the system with a number of different classes of protein.


Assuntos
Células CHO/metabolismo , DNA/administração & dosagem , Transfecção/métodos , Animais , Reatores Biológicos/economia , Células CHO/citologia , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos , Cricetulus , DNA/genética , Expressão Gênica , Polietilenoimina/química , Transfecção/economia
5.
J Biol Chem ; 285(47): 36709-20, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20858901

RESUMO

Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5'-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/antagonistas & inibidores , Fatores de Ribosilação do ADP/genética , Complexo I de Proteína do Envoltório/genética , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Membranas Intracelulares/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismo
6.
Nat Neurosci ; 23(12): 1580-1588, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199898

RESUMO

Amyloid-ß (Aß) deposits are a relatively late consequence of Aß aggregation in Alzheimer's disease. When pathogenic Aß seeds begin to form, propagate and spread is not known, nor are they biochemically defined. We tested various antibodies for their ability to neutralize Aß seeds before Aß deposition becomes detectable in Aß precursor protein-transgenic mice. We also characterized the different antibody recognition profiles using immunoprecipitation of size-fractionated, native, mouse and human brain-derived Aß assemblies. At least one antibody, aducanumab, after acute administration at the pre-amyloid stage, led to a significant reduction of Aß deposition and downstream pathologies 6 months later. This demonstrates that therapeutically targetable pathogenic Aß seeds already exist during the lag phase of protein aggregation in the brain. Thus, the preclinical phase of Alzheimer's disease-currently defined as Aß deposition without clinical symptoms-may be a relatively late manifestation of a much earlier pathogenic seed formation and propagation that currently escapes detection in vivo.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/farmacologia , Química Encefálica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Placa Amiloide/patologia , Extratos de Tecidos/farmacologia
7.
Structure ; 27(7): 1103-1113.e3, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31104815

RESUMO

Sortilin is a multifunctional neuronal receptor involved in sorting of neurotrophic factors and apoptosis signaling. So far, structural characterization of sortilin and its endogenous ligands has been limited to crystallographic studies of sortilin in complex with the neuropeptide neurotensin. Here, we use hydrogen/deuterium exchange mass spectrometry to investigate the conformational response of sortilin to binding biological ligands including the peptides neurotensin and the sortilin propeptide and the proteins progranulin and pro-nerve growth factor-ß. The results show that the ligands use two binding sites inside the cavity of the ß-propeller of sortilin. However, ligands have distinct differences in their conformational impact on the receptor. Interestingly, the protein ligands induce conformational stabilization in a remote membrane-proximal domain, hinting at an unknown conformational link between the ligand binding region and this membrane-proximal region of sortilin. Our findings improve our structural understanding of sortilin and how it mediates diverse ligand-dependent functions important in neurobiology.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Fator de Crescimento Neural/química , Neurotensina/química , Progranulinas/química , Precursores de Proteínas/química , Proteínas Recombinantes de Fusão/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Ligantes , Modelos Moleculares , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Neurotensina/genética , Neurotensina/metabolismo , Progranulinas/genética , Progranulinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Sci Rep ; 9(1): 4658, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874605

RESUMO

Neurodegenerative diseases such as Alzheimer's disease are characterized by the progressive spreading and accumulation of hyper-phosphorylated tau protein in the brain. Anti-tau antibodies have been shown to reduce tau pathology in in vivo models and antibody-mediated clearance of tau exerted by microglia has been proposed as a contributing factor. By subjecting primary microglia cultured in vitro to anti-phospho-tau antibodies in complex with pathological tau, we show that microglia internalise and degrade tau in a manner that is dependent on FcγR interaction and functional lysosomes. It has recently been discussed if anti-tau antibody effector-functions are required for induction of tau clearance. Using antibodies with compromised FcγR binding and non-compromised control antibodies we show that antibody effector functions are required for induction of microglial clearance of tau. Understanding the inflammatory consequences of targeting microglia using therapeutic antibodies is important when developing these molecules for clinical use. Using RNA sequencing, we show that treatment with anti-tau antibodies increases transcription of mRNA encoding pro-inflammatory markers, but that the mRNA expression profile of antibody-treated cells differ from the profile of LPS activated microglia. We further demonstrate that microglia activation alone is not sufficient to induce significant tau clearance.


Assuntos
Lisossomos/metabolismo , Microglia/metabolismo , Receptores de IgG/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Fosforilação , Cultura Primária de Células , Receptores de IgG/imunologia , Proteínas tau/imunologia
9.
Alzheimers Dement (N Y) ; 4: 521-534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386817

RESUMO

INTRODUCTION: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. METHODS: Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. RESULTS: The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. DISCUSSION: Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.

10.
Biochim Biophys Acta ; 1744(3): 351-63, 2005 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-15939491

RESUMO

Intracellular transport has remained central to cell biology now for more than 40 years. Despite this, we still lack an overall mechanistic framework that describes transport in different parts of the cell. In the secretory pathway, basic questions, such as how biosynthetic cargo traverses the pathway, are still debated. Historically, emphasis was first put on interpreting function from morphology at the ultrastructural level revealing membrane structures such as the transitional ER, vesicular carriers, vesicular tubular clusters, Golgi cisternae, Golgi stacks and the Golgi ribbon. This emphasis on morphology later switched to biochemistry and yeast genetics yielding many of the key molecular players and their associated functions that we know today. More recently, microscopy studies of living cells incorporating biophysics and system analysis has proven useful and is often used to readdress earlier findings, sometimes with surprising outcomes.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Animais , Glicosiltransferases/metabolismo , Transporte Proteico
11.
Mol Biol Cell ; 20(3): 780-90, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19037109

RESUMO

We have investigated the role for diacylglycerol (DAG) in membrane bud formation in the Golgi apparatus. Addition of propranolol to specifically inhibit phosphatidate phosphohydrolase (PAP), an enzyme responsible for converting phosphatidic acid into DAG, effectively prevents formation of membrane buds. The effect of PAP inhibition on Golgi membranes is rapid and occurs within 3 min. Removal of the PAP inhibitor then results in a rapid burst of buds, vesicles, and tubules that peaks within 2 min. The inability to form buds in the presence of propranolol does not appear to be correlated with a loss of ARFGAP1 from Golgi membranes, as knockdown of ARFGAP1 by RNA interference has little or no effect on actual bud formation. Rather, knockdown of ARFGAP1 results in an increase in membrane buds and a decrease of vesicles and tubules suggesting it functions in the late stages of scission. How DAG promotes bud formation is discussed.


Assuntos
Diglicerídeos/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas Ativadoras de GTPase/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Fosfatidato Fosfatase/metabolismo , Ácidos Fosfatídicos/metabolismo , Ratos
12.
Biophys J ; 87(5): 3518-24, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15339818

RESUMO

Macromolecular crowding dramatically affects cellular processes such as protein folding and assembly, regulation of metabolic pathways, and condensation of DNA. Despite increased attention, we still lack a definition for how crowded a heterogeneous environment is at the molecular scale and how this manifests in basic physical phenomena like diffusion. Here, we show by means of fluorescence correlation spectroscopy and computer simulations that crowding manifests itself through the emergence of anomalous subdiffusion of cytoplasmic macromolecules. In other words, the mean square displacement of a protein will grow less than linear in time and the degree of this anomality depends on the size and conformation of the traced particle and on the total protein concentration of the solution. We therefore propose that the anomality of the diffusion can be used as a quantifiable measure for the crowdedness of the cytoplasm at the molecular scale.


Assuntos
Citoplasma/química , Citoplasma/metabolismo , Dextranos/química , Dextranos/metabolismo , Modelos Biológicos , Modelos Químicos , Simulação por Computador , Difusão , Células HeLa , Humanos , Substâncias Macromoleculares , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa