RESUMO
PURPOSE: Positron emission tomography (PET) imaging of mutant huntingtin (mHTT) aggregates is a potential tool to monitor disease progression as well as the efficacy of candidate therapeutic interventions for Huntington's disease (HD). To date, the focus has been mainly on the investigation of 11C radioligands; however, favourable 18F radiotracers will facilitate future clinical translation. This work aimed at characterising the novel [18F]CHDI-650 PET radiotracer using a combination of in vivo and in vitro approaches in a mouse model of HD. METHODS: After characterising [18F]CHDI-650 using in vitro autoradiography, we assessed in vivo plasma and brain radiotracer stability as well as kinetics through dynamic PET imaging in the heterozygous (HET) zQ175DN mouse model of HD and wild-type (WT) littermates at 9 months of age. Additionally, we performed a head-to-head comparison study at 3 months with the previously published [11C]CHDI-180R radioligand. RESULTS: Plasma and brain radiometabolite profiles indicated a suitable metabolic profile for in vivo imaging of [18F]CHDI-650. Both in vitro autoradiography and in vivo [18F]CHDI-650 PET imaging at 9 months of age demonstrated a significant genotype effect (p < 0.0001) despite the poor test-retest reliability. [18F]CHDI-650 PET imaging at 3 months of age displayed higher differentiation between genotypes when compared to [11C]CHDI-180R. CONCLUSION: Overall, [18F]CHDI-650 allows for discrimination between HET and WT zQ175DN mice at 9 and 3 months of age. [18F]CHDI-650 represents the first suitable 18F radioligand to image mHTT aggregates in mice and its clinical evaluation is underway.
RESUMO
PURPOSE: Huntington's disease is caused by a trinucleotide expansion in the HTT gene, which leads to aggregation of mutant huntingtin (mHTT) protein in the brain and neurotoxicity. Direct in vivo measurement of mHTT aggregates in human brain parenchyma is not yet possible. In this first-in-human study, we investigated biodistribution and dosimetry in healthy volunteers of [11C]CHDI-00485180-R ([11C]CHDI-180R) and [11C]CHDI-00485626 ([11C]CHDI-626), two tracers designed for PET imaging of aggregated mHTT in the brain that have been validated in preclinical models. METHODS: Biodistribution and radiation dosimetry studies were performed in 3 healthy volunteers (age 25.7 ± 0.5 years; 2 F) for [11C]CHDI-180R and in 3 healthy volunteers (age 35.3 ± 6.8 years; 2 F) for [11C]CHDI-626 using sequential whole-body PET-CT. Source organs were delineated in 3D using combined PET and CT data. Individual organ doses and effective doses were determined using OLINDA 2.1. RESULTS: There were no clinically relevant adverse events. The mean effective dose (ED) for [11C]CHDI-180R was 4.58 ± 0.65 µSv/MBq, with highest absorbed doses for liver (16.9 µGy/MBq), heart wall (15.9 µGy/MBq) and small intestine (15.8 µGy/MBq). Mean ED for [11C]CHDI-626 was 5.09 ± 0.06 µSv/MBq with the highest absorbed doses for the gallbladder (26.5 µGy/MBq), small intestine (20.4 µGy/MBq) and liver (19.6 µGy/MBq). Decay-corrected brain uptake curves showed promising kinetics for [11C]CHDI-180R, but for [11C]CHDI-626 an increasing signal over time was found, probably due to accumulation of a brain-penetrant metabolite. CONCLUSION: [11C]CHDI-180R and [11C]CHDI-626 are safe for in vivo PET imaging in humans. The estimated radiation burden is in line with most 11C-ligands. While [11C]CHDI-180R has promising kinetic properties in the brain, [11C]CHDI-626 is not suitable for human in vivo mHTT PET due to the possibility of a radiometabolite accumulating in brain parenchyma. TRIAL REGISTRATION: EudraCT number 2020-002129-27. CLINICALTRIALS: gov NCT05224115 (retrospectively registered).
Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Humanos , Adulto , Voluntários Saudáveis , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodosRESUMO
PURPOSE: As several therapies aimed at lowering mutant huntingtin (mHTT) brain levels in Huntington's disease (HD) are currently being investigated, noninvasive positron emission tomography (PET) imaging of mHTT could be utilized to directly evaluate therapeutic efficacy and monitor disease progression. Here we characterized and longitudinally assessed the novel radioligand [11C]CHDI-626 for mHTT PET imaging in the zQ175DN mouse model of HD. METHODS: After evaluating radiometabolites and radioligand kinetics, we conducted longitudinal dynamic PET imaging at 3, 6, 9, and 13 months of age (M) in wild-type (WT, n = 17) and heterozygous (HET, n = 23) zQ175DN mice. Statistical analysis was performed to evaluate temporal and genotypic differences. Cross-sectional cohorts at each longitudinal time point were included for post-mortem [3H]CHDI-626 autoradiography. RESULTS: Despite fast metabolism and kinetics, the radioligand was suitable for PET imaging of mHTT. Longitudinal quantification could discriminate between genotypes already at premanifest stage (3 M), showing an age-associated increase in signal in HET mice in parallel with mHTT aggregate load progression, as supported by the post-mortem [3H]CHDI-626 autoradiography. CONCLUSION: With clinical evaluation underway, [11C]CHDI-626 PET imaging appears to be a suitable preclinical candidate marker to monitor natural HD progression and for the evaluation of mHTT-lowering therapies.
Assuntos
Doença de Huntington , Animais , Radioisótopos de Carbono , Estudos Transversais , Modelos Animais de Doenças , Humanos , Doença de Huntington/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodosRESUMO
While blood-brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington's disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Animais , Barreira Hematoencefálica/fisiologia , Diferenciação Celular , Células Endoteliais/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , CamundongosRESUMO
The kynurenine pathway (KP) is a key regulator of many important physiological processes and plays a harmful role in cancer, many neurologic conditions, and chronic viral infections. In HIV infection, KP activity is consistently associated with reduced CD4 T cell counts and elevated levels of T cell activation and viral load; it also independently predicts mortality and morbidity from non-AIDS events. Kynurenine 3-monooxygenase (KMO) is a therapeutically important target in the KP. Using the nonhuman primate model of SIV infection in rhesus macaques, we investigated whether KMO inhibition could slow the course of disease progression. We used a KMO inhibitor, CHDI-340246, to perturb the KP during early acute infection and followed the animals for 1 y to assess clinical outcomes and immune phenotype and function during pre-combination antiretroviral therapy acute infection and combination antiretroviral therapy-treated chronic infection. Inhibition of KMO in acute SIV infection disrupted the KP and prevented SIV-induced increases in downstream metabolites, improving clinical outcome as measured by both increased CD4+ T cell counts and body weight. KMO inhibition increased naive T cell frequency and lowered PD-1 expression in naive and memory T cell subsets. Importantly, early PD-1 expression during acute SIV infection predicted clinical outcomes of body weight and CD4+ T cell counts. Our data indicate that KMO inhibition in early acute SIV infection provides clinical benefit and suggest a rationale for testing KMO inhibition as an adjunctive treatment in SIV/HIV infection to slow the progression of the disease and improve immune reconstitution.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Receptor de Morte Celular Programada 1/biossíntese , Pirimidinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Antirretrovirais/farmacologia , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Macaca mulatta , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismoRESUMO
The disposition of a novel kynurenine monooxygenase inhibitor, CHDI-340246, was investigated in vitro and in animals.In vitro, there was minimal metabolic turnover of CHDI-340246 in all species. The protein binding was higher in human plasma (99.7%) relative to other species.In all species, blood clearance was low (<20% of liver blood flow) and volume of distribution was small (<0.5 L/kg). The terminal half-life was longer in monkeys (9 hr) than in mice, rats, or dogs (1-2 hr). CHDI-340246 was orally bioavailable (>60%) in all species.In rats, [14C]CHDI-340246 showed wide distribution of radioactivity in all tissues except brain and testes. In rats, the parent drug was the major circulating moiety with minor amounts of a sulphate conjugate of an O-dealkylated metabolite. The elimination occurred via the urinary route and to a lesser extent by biliary route, but mostly as metabolites. In cynomolgus monkeys, the parent drug predominated in plasma with only trace amounts of metabolites detected.Acyl glucuronide conjugate of CHDI-340246 was not detected in plasma of rats or monkeys.Overall, the ADME profile of CHDI-340246 was favourable in rats and monkeys for potential evaluation of KMO inhibition in humans.
Assuntos
Cinurenina , Pirimidinas , Animais , Animais de Laboratório , Cães , Camundongos , Oxigenases de Função Mista , Ratos , Especificidade da EspécieRESUMO
Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood-brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.
Assuntos
Barreira Hematoencefálica/metabolismo , Fármacos do Sistema Nervoso Central/uso terapêutico , Descoberta de Drogas/métodos , Doença de Huntington/tratamento farmacológico , Modelos Biológicos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Astrócitos/metabolismo , Permeabilidade Capilar/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Técnicas de Cocultura , Impedância Elétrica , Células Endoteliais/metabolismo , Permeabilidade , Ratos , Ratos Sprague-Dawley , Proteínas Carreadoras de Solutos/metabolismo , Suínos , Junções Íntimas/metabolismoRESUMO
Huntington's disease (HD) is caused by expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an earlier clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL ( T hy-1- R FP- G FP- L C3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited high level colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder that included a lowered phospho-p70S6K level, lysosome depletion and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62- and ubiquitin-immunoreactivities, suggesting beneficial potential of autophagy modulation at early stages of disease progression.
RESUMO
Background: Dysregulation of the kynurenine metabolic pathway has been reported in several neurological conditions. Methods & results: Sensitive and selective LC-MS/MS methods have been validated for six kynurenine pathway metabolites in human cerebrospinal fluid and plasma. For each matrix, we validated three methods - one for the simultaneous determination of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (four-analyte assay), one for quinolinic acid and one for tryptophan - using stable-isotopically labeled internal standards. The dynamic range and quantitation limits were based on endogenous concentrations for each analyte. Conclusion: The use of validated methods for kynurenine pathway metabolites in human cerebrospinal fluid and plasma will provide definitive information in neurological diseases.
Assuntos
Cinurenina , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Triptofano , Plasma/metabolismo , Ácido Quinolínico/líquido cefalorraquidianoRESUMO
Huntington disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (CAG) trinucleotide expansion in the huntingtin (HTT) gene that encodes the mutant huntingtin protein (mHTT). Visualization and quantification of cerebral mHTT will provide a proxy for target engagement and a means to evaluate therapeutic interventions aimed at lowering mHTT in the brain. Here, we validated the novel radioligand 11C-labeled 6-(5-((5-methoxypyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one (11C-CHDI-180R) using PET imaging to quantify cerebral mHTT aggregates in a macaque model of HD. Methods: Rhesus macaques received MRI-guided intrastriatal delivery of a mixture of AAV2 and AAV2.retro viral vectors expressing an HTT fragment bearing 85 CAG repeats (85Q, n = 5), a control HTT fragment bearing 10 CAG repeats (10Q, n = 4), or vector diluent only (phosphate-buffered saline, n = 5). Thirty months after surgery, 90-min dynamic PET/CT imaging was used to investigate 11C-CHDI-180R brain kinetics, along with serial blood sampling to measure input function and stability of the radioligand. The total volume of distribution was calculated using a 2-tissue-compartment model as well as Logan graphical analysis for regional quantification. Immunostaining for mHTT was performed to corroborate the in vivo findings. Results: 11C-CHDI-180R displayed good metabolic stability (51.4% ± 4.0% parent in plasma at 60 min after injection). Regional time-activity curves displayed rapid uptake and reversible binding, which were described by a 2-tissue-compartment model. Logan graphical analysis was associated with the 2-tissue-compartment model (r 2 = 0.96, P < 0.0001) and used to generate parametric volume of distribution maps. Compared with controls, animals administered the 85Q fragment exhibited significantly increased 11C-CHDI-180R binding in several cortical and subcortical brain regions (group effect, P < 0.0001). No difference in 11C-CHDI-180R binding was observed between buffer and 10Q animals. The presence of mHTT aggregates in the 85Q animals was confirmed histologically. Conclusion: We validated 11C-CHDI-180R as a radioligand to visualize and quantify mHTT aggregated species in a HD macaque model. These findings corroborate our previous work in rodent HD models and show that 11C-CHDI-180R is a promising tool to assess the mHTT aggregate load and the efficacy of therapeutic strategies.
Assuntos
Doença de Huntington , Animais , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macaca mulatta/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Modelos Animais de DoençasRESUMO
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Assuntos
Doença de Huntington , Tomografia por Emissão de Pósitrons , Animais , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.
RESUMO
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with 11C ([11C]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.
Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/metabolismo , Ligantes , Doenças Neurodegenerativas/patologiaRESUMO
We have developed an inducible Huntington's disease (HD) mouse model that allows temporal control of whole-body allele-specific mutant huntingtin (mHtt) expression. We asked whether moderate global lowering of mHtt (~50%) was sufficient for long-term amelioration of HD-related deficits and, if so, whether early mHtt lowering (before measurable deficits) was required. Both early and late mHtt lowering delayed behavioral dysfunction and mHTT protein aggregation, as measured biochemically. However, long-term follow-up revealed that the benefits, in all mHtt-lowering groups, attenuated by 12 months of age. While early mHtt lowering attenuated cortical and striatal transcriptional dysregulation evaluated at 6 months of age, the benefits diminished by 12 months of age, and late mHtt lowering did not ameliorate striatal transcriptional dysregulation at 12 months of age. Only early mHtt lowering delayed the elevation in cerebrospinal fluid neurofilament light chain that we observed in our model starting at 9 months of age. As small-molecule HTT-lowering therapeutics progress to the clinic, our findings suggest that moderate mHtt lowering allows disease progression to continue, albeit at a slower rate, and could be relevant to the degree of mHTT lowering required to sustain long-term benefits in humans.
Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Lactente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Agregados Proteicos , Proteína Huntingtina/genética , Proteína Huntingtina/líquido cefalorraquidiano , Modelos Animais de Doenças , Corpo Estriado/metabolismo , Progressão da DoençaRESUMO
Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.
Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Autorradiografia/métodos , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Radioisótopos de Nitrogênio/metabolismo , Traçadores Radioativos , Ensaio Radioligante/métodos , Proteínas Recombinantes/metabolismoRESUMO
The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.
Assuntos
Encéfalo/diagnóstico por imagem , Compostos Heterocíclicos com 3 Anéis/química , Proteína Huntingtina/metabolismo , Agregados Proteicos/fisiologia , Piridinas/química , Compostos Radiofarmacêuticos/química , Doença de Alzheimer , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Feminino , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/síntese química , Piridinas/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-AtividadeRESUMO
The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ωâcm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).
Assuntos
Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Astrócitos/metabolismo , Transporte Biológico/fisiologia , Encéfalo/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/química , Sistema Nervoso Central/metabolismo , Criopreservação/métodos , Humanos , Imuno-Histoquímica , Permeabilidade , SuínosRESUMO
Mutant huntingtin (mHTT) protein carrying the elongated N-terminal polyglutamine (polyQ) tract misfolds and forms protein aggregates characteristic of Huntington's disease (HD) pathology. A high-affinity ligand specific for mHTT aggregates could serve as a positron emission tomography (PET) imaging biomarker for HD therapeutic development and disease progression. To identify such compounds with binding affinity for polyQ aggregates, we embarked on systematic structural activity studies; lead optimization of aggregate-binding affinity, unbound fractions in brain, permeability, and low efflux culminated in the discovery of compound 1, which exhibited target engagement in autoradiography (ARG) studies in brain slices from HD mouse models and postmortem human HD samples. PET imaging studies with 11C-labeled 1 in both HD mice and WT nonhuman primates (NHPs) demonstrated that the right-hand-side labeled ligand [11C]-1R (CHDI-180R) is a suitable PET tracer for imaging of mHTT aggregates. [11C]-1R is now being advanced to human trials as a first-in-class HD PET radiotracer.
Assuntos
Proteína Huntingtina/análise , Doença de Huntington/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Agregação Patológica de Proteínas/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Cães , Feminino , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Ligantes , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Compostos Radiofarmacêuticos/análise , Ratos Sprague-DawleyRESUMO
Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD.