Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960949

RESUMO

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Assuntos
Memória Imunológica , Células Matadoras Naturais , Proteínas Recombinantes de Fusão , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Humanos , Animais , Proteínas Recombinantes de Fusão/genética , Camundongos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia Adotiva/métodos , Interleucina-15/metabolismo
2.
Pediatr Blood Cancer ; 65(9): e27224, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856514

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) remains a major cause of death in children. AMP-activated protein kinase (AMPK) affects the unfolded protein response (UPR), leading to increased vulnerability to endoplasmic reticulum (ER) stress in ALL cells. In vitro, metformin causes ALL cell death via AMPK-mediated inhibition of the UPR. It was evaluated whether ER stress could be induced in relapsed ALL through a phase I study investigating the safety and feasibility of metformin in combination with relapse induction chemotherapy. PROCEDURE: Metformin was administered twice daily for 28 days in addition to vincristine, dexamethasone, PEG-asparaginase and doxorubicin (VXLD). Dose escalation of metformin was evaluated using a 3+3 design. Pharmacokinetics (PK), pharmacodynamic (PD) evaluation of the AMPK and ER stress/UPR pathways, and treatment response were assessed. RESULTS: Fourteen patients were enrolled; all were evaluable for toxicity. The recommended phase 2 dose (RP2D) was Dose level 2, 1,000 mg/m2 /day. A single dose-limiting toxicity (DLT), hypoglycemia with acidosis, was observed at the RP2D and two DLTs, diarrhea and acidosis, were observed at Dose Level 3. Nine patients were evaluable for response as defined by the protocol, receiving at least 85% of planned metformin doses. Five complete remissions, one partial response, and one stable disease were observed. PD evaluation showed induction of ER stress, activation of AMPK, and inhibition of the UPR. CONCLUSIONS: The VXLD with metformin was tolerable with a RP2D for metformin of 1,000 mg/m2 /day and yielded responses in a heavily pretreated population. ER stress was induced and toxicities attributable to metformin occurred in all dose levels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Terapia de Salvação , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Asparaginase/administração & dosagem , Asparaginase/efeitos adversos , Criança , Pré-Escolar , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Dose Máxima Tolerável , Metformina/administração & dosagem , Metformina/efeitos adversos , Metformina/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Recidiva , Resultado do Tratamento , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Vincristina/administração & dosagem , Vincristina/efeitos adversos , Adulto Jovem
3.
Aging Cell ; 22(5): e13806, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967480

RESUMO

Accumulation of senescent cells (SNCs) with a senescence-associated secretory phenotype (SASP) has been implicated as a major source of chronic sterile inflammation leading to many age-related pathologies. Herein, we provide evidence that a bifunctional immunotherapeutic, HCW9218, with capabilities of neutralizing TGF-ß and stimulating immune cells, can be safely administered systemically to reduce SNCs and alleviate SASP in mice. In the diabetic db/db mouse model, subcutaneous administration of HCW9218 reduced senescent islet ß cells and SASP resulting in improved glucose tolerance, insulin resistance, and aging index. In naturally aged mice, subcutaneous administration of HCW9218 durably reduced the level of SNCs and SASP, leading to lower expression of pro-inflammatory genes in peripheral organs. HCW9218 treatment also reverted the pattern of key regulatory circadian gene expression in aged mice to levels observed in young mice and impacted genes associated with metabolism and fibrosis in the liver. Single-nucleus RNA Sequencing analysis further revealed that HCW9218 treatment differentially changed the transcriptomic landscape of hepatocyte subtypes involving metabolic, signaling, cell-cycle, and senescence-associated pathways in naturally aged mice. Long-term survival studies also showed that HCW9218 treatment improved physical performance without compromising the health span of naturally aged mice. Thus, HCW9218 represents a novel immunotherapeutic approach and a clinically promising new class of senotherapeutic agents targeting cellular senescence-associated diseases.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Camundongos , Animais , Senescência Celular/genética , Envelhecimento , Inflamação , Imunoterapia , Fenótipo
4.
Cancer Immunol Res ; 9(9): 1071-1087, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244297

RESUMO

Natural killer (NK) cells are a promising cellular therapy for cancer, with challenges in the field including persistence, functional activity, and tumor recognition. Briefly, priming blood NK cells with recombinant human (rh)IL-12, rhIL-15, and rhIL-18 (12/15/18) results in memory-like NK cell differentiation and enhanced responses against cancer. However, the lack of available, scalable Good Manufacturing Process (GMP)-grade reagents required to advance this approach beyond early-phase clinical trials is limiting. To address this challenge, we developed a novel platform centered upon an inert tissue factor scaffold for production of heteromeric fusion protein complexes (HFPC). The first use of this platform combined IL-12, IL-15, and IL-18 receptor engagement (HCW9201), and the second adds CD16 engagement (HCW9207). This unique HFPC expression platform was scalable with equivalent protein quality characteristics in small- and GMP-scale production. HCW9201 and HCW9207 stimulated activation and proliferation signals in NK cells, but HCW9207 had decreased IL-18 receptor signaling. RNA sequencing and multidimensional mass cytometry revealed parallels between HCW9201 and 12/15/18. HCW9201 stimulation improved NK cell metabolic fitness and resulted in the DNA methylation remodeling characteristic of memory-like differentiation. HCW9201 and 12/15/18 primed similar increases in short-term and memory-like NK cell cytotoxicity and IFNγ production against leukemia targets, as well as equivalent control of leukemia in NSG mice. Thus, HFPCs represent a protein engineering approach that solves many problems associated with multisignal receptor engagement on immune cells, and HCW9201-primed NK cells can be advanced as an ideal approach for clinical GMP-grade memory-like NK cell production for cancer therapy.


Assuntos
Interleucina-12/farmacologia , Interleucina-15/farmacologia , Interleucina-18/farmacologia , Células Matadoras Naturais/imunologia , Leucemia/terapia , Animais , Linhagem Celular Tumoral , Humanos , Memória Imunológica/efeitos dos fármacos , Leucemia/imunologia , Camundongos , Receptores de Células Matadoras Naturais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Neuroendocrinology ; 88(1): 1-16, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18259093

RESUMO

Recent evidence reveals that several GATA factors act as versatile transcriptional modulators in neuroendocrine gene expression. The rat GnRH promoter is expressed in an episodic fashion that requires a portion of the promoter termed the neuron-specific enhancer (NSE) for activity. In this study, we examined whether certain GATA regulatory elements in the NSE are necessary for this intermittent activity. When injected into individual living GT1-7 cells, luciferase reporter constructs containing mutations of either GATA-A- or GATA-B-binding sites resulted in a marked reduction in gene expression pulse frequency, while mutations of both sites virtually abolished pulses. In subsequent studies, RT-PCR and western blot analysis revealed for the first time that GATA-5 and GATA-6 were expressed in GT1-7 cells, but electrophoretic mobility shift assays demonstrated further that GATA-5 bound to one of these GATA sites: GATA-A. Chromatin immunoprecipitation analysis revealed that all three factors, GATA-4, GATA-5, and GATA-6, were associated with the GnRH promoter in vivo. Interestingly though, immunoneutralization of GATA-5 or GATA-4 (reported to bind GATA-B) abolished gene expression pulses, but injection of GATA-6 antibody did not, indicating that of these factors just GATA-5 and GATA-4 are critical for intermittent activity. Finally, gel shift competition experiments revealed an interaction between proteins binding at the GATA-A site and those associating with an adjacent OCT1 site, previously shown to be necessary for pulse formation. These findings indicate that episodic GnRH gene expression pulses are mediated by GATA-5 and GATA-4, likely acting through the GATA-binding sites in the GnRH NSE region. Moreover, our observations that factors associated with GATA sites may also interact with OCT1 sites and that both are critical for pulse activity raise the intriguing possibility that GnRH pulse elaboration is a highly complex process that may require the coordinated interaction of several NSE-binding elements of the GnRH promoter.


Assuntos
Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA5/fisiologia , Regulação da Expressão Gênica/fisiologia , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Regiões Promotoras Genéticas , Animais , Sítios de Ligação/genética , Linhagem Celular , Células Cultivadas , Análise Mutacional de DNA , Elementos Facilitadores Genéticos , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA5/genética , Fator de Transcrição GATA5/metabolismo , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Neurônios/fisiologia , Ratos
6.
Oncotarget ; 9(5): 5529-5544, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464016

RESUMO

De novo and acquired drug resistance and subsequent relapse remain major challenges in acute lymphoblastic leukemia (ALL). We previously identified that pevonedistat (TAK-924, MLN4924), a first-in-class inhibitor of NEDD8 activating enzyme (NAE), elicits ER stress and has potent in vitro and in vivo efficacy against ALL. However, in pevonedistat-treated ALL cell lines, we found consistent activation of the pro-survival MEK/ERK pathway, which has been associated with relapse and poor outcome in ALL. We uncovered that inhibition of the MEK/ERK pathway in vitro and in vivo sensitized ALL cells to pevonedistat. The observed synergistic apoptotic effect appears to be mediated by inhibition of the MEK/ERK pro-survival cascade leading to de-repression of the pro-apoptotic BIM protein. Mechanistically, Ca2+ influx via the Ca2+-release-activated Ca2+ (CRAC) channel induced protein kinase C ß2 (PKC-ß2) was responsible for activation of the MEK/ERK pathway in pevonedistat-treated ALL cells. Sequestration of Ca2+ using BAPTA-AM or blockage of store-operated Ca2+ entry (SOCE) using BTP-2 both attenuated the compensatory activation of MEK/ERK signaling in pevonedistat-treated ALL cells. Pevonedistat significantly altered the expression of Orai1 and stromal interaction molecule 1 (STIM1), resulting in significantly decreased STIM1 protein levels relative to Orai1. Further, we identified eIF2α as an important post-transcriptional regulator of STIM1, suggesting that pevonedistat-induced eIF2α de-phosphorylation selectively down-regulates translation of STIM1 mRNA. Consequently, our data suggest that pevonedistat potentially activates SOCE and promotes Ca2+ influx leading to activation of the MEK/ERK pathway by altering the stoichiometric Orai1:STIM1 ratio and inducing ER stress in ALL cells.

7.
Mol Cancer ; 6: 46, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17623090

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting children. Despite significant progress and success in the treatment of ALL, a significant number of children continue to relapse and for them, outcome remains poor. Therefore, the search for novel therapeutic approaches is warranted. The aim of this study was to investigate the AMP activated protein kinase (AMPK) as a potential target in childhood acute lymphoblastic leukemia (ALL) subtypes characterized by non-random translocation signature profiles. We evaluated the effects of the AMPK activator AICAR on cell growth, cell cycle regulators and apoptosis of various childhood ALL cells. RESULTS: We found that treatment with AICAR inhibited cell proliferation, induced cell cycle arrest in G1-phase, and apoptosis in CCRF-CEM (T-ALL), NALM6 (Bp-ALL), REH (Bp-ALL, TEL/AML1) and SupB15 (Bp-ALL, BCR/ABL) cells. These effects were abolished by treatment with the adenosine kinase inhibitor 5'-iodotubericidin prior to addition of AICAR indicating that AICAR's cytotoxicity is mediated through AMPK activation. Moreover, we determined that growth inhibition exerted by AICAR was associated with activation of p38-MAPK and increased expression of the cell cycle regulators p27 and p53. We also demonstrated that AICAR mediated apoptosis through the mitochondrial pathway as revealed by the release of cytochrome C and cleavage of caspase 9. Additionally, AICAR treatment resulted in phosphorylation of Akt suggesting that activation of the PI3K/Akt pathway may represent a compensatory survival mechanism in response to apoptosis and/or cell cycle arrest. Combined treatment with AICAR and the mTOR inhibitor rapamycin resulted in additive anti-proliferative activity ALL cells. CONCLUSION: AICAR-mediated AMPK activation was found to be a proficient cytotoxic agent in ALL cells and the mechanism of its anti-proliferative and apoptotic effect appear to be mediated via activation of p38-MAPK pathway, increased expression of cell cycle inhibitory proteins p27 and p53, and downstream effects on the mTOR pathway, hence exhibiting therapeutic potential as a molecular target for the treatment of childhood ALL. Therefore, activation of AMPK by AICAR represents a novel approach to targeted therapy, and suggests a role for AICAR in combination therapy with inhibitors of the PI3K/Akt/mTOR pathways for the treatment of childhood in ALL.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Pró-Fármacos/farmacologia , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP , Aminoimidazol Carboxamida/farmacologia , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Leucemia-Linfoma de Células T do Adulto/enzimologia , Leucemia-Linfoma de Células T do Adulto/patologia , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/efeitos dos fármacos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Fosforilação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Sirolimo/farmacologia , Tubercidina/análogos & derivados , Tubercidina/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Mol Cell Endocrinol ; 267(1-2): 70-9, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17241740

RESUMO

Recent evidence using GT1-7 cells indicates that GnRH pulsatility depends on exocytotic-release and gene transcription events. To determine whether calcium or DREAM may play a role in linking these processes, we used an L-type Ca(2+)-blocker (nimodipine) and found that not only GnRH gene expression (GnRH-GE) pulse activity was abolished but also that binding of proteins to OCT1BS-a (essential site for GnRH-GE pulses) was reduced. We further found that only EF-hand forms of DREAM were expressed in GT1-7 and that DREAM was part of the complex binding to OCT1BS-a. Finally, microinjection of DREAM antibody into cells abolished GnRH-GE pulses demonstrating its importance in pulsatility. These results reveal that calcium and DREAM may bridge cytoplasmic and nuclear events enabling temporal coordination of intermittent activity. Expression of DREAM in various cell types coupled with the universal role of calcium raise the possibility that these factors may play similar role in other secretory cells.


Assuntos
Sinalização do Cálcio , Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Fótons , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/efeitos dos fármacos , Canais de Cálcio Tipo L , Sinalização do Cálcio/efeitos dos fármacos , DNA Complementar/genética , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Interatuantes com Canais de Kv/química , Proteínas Interatuantes com Canais de Kv/genética , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Nimodipina/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética
9.
BMC Cancer ; 6: 132, 2006 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-16707018

RESUMO

BACKGROUND: Expression of folylpoly-gamma-glutamate synthetase (FPGS) gene is two- to three-fold higher in B-precursor ALL (Bp- ALL) than in T-lineage ALL (T-ALL) and correlates with intracellular accumulation of methotrexate (MTX) polyglutamates and lymphoblast sensitivity to MTX. In this report, we investigated the molecular regulatory mechanisms directing FPGS gene expression in Bp-ALL and T-ALL cells. METHODS: To determine FPGS transcription rate in Bp-ALL and T-ALL we used nuclear run-on assays. 5'-RACE was used to uncover potential regulatory regions involved in the lineage differences. We developed a luciferase reporter gene assay to investigate FPGS promoter/enhancer activity. To further characterize the FPGS proximal promoter, we determined the role of the putative transcription binding sites NFY and E-box on FPGS expression using luciferase reporter gene assays with substitution mutants and EMSA. RESULTS: FPGS transcription initiation rate was 1.6-fold higher in NALM6 vs. CCRF-CEM cells indicating that differences in transcription rate led to the observed lineage differences in FPGS expression between Bp-ALL and T-ALL blasts. Two major transcripts encoding the mitochondrial/cytosolic and cytosolic isoforms were detected in Bp-ALL (NALM6 and REH) whereas in T-ALL (CCRF-CEM) cells only the mitochondrial/cytosolic transcript was detected. In all DNA fragments examined for promoter/enhancer activity, we measured significantly lower luciferase activity in NALM6 vs. CCRF-CEM cells, suggesting the need for additional yet unidentified regulatory elements in Bp-ALL. Finally, we determined that the putative transcription factor binding site NFY, but not E-box, plays a role in FPGS transcription in both Bp- and T-lineage. CONCLUSION: We demonstrated that the minimal FPGS promoter region previously described in CCRF-CEM is not sufficient to effectively drive FPGS transcription in NALM6 cells, suggesting that different regulatory elements are required for FPGS gene expression in Bp-cells. Our data indicate that the control of FPGS expression in human hematopoietic cells is complex and involves lineage-specific differences in regulatory elements, transcription initiation rates, and mRNA processing. Understanding the lineage-specific mechanisms of FPGS expression should lead to improved therapeutic strategies aimed at overcoming MTX resistance or inducing apoptosis in leukemic cells.


Assuntos
Regulação Neoplásica da Expressão Gênica , Leucemia Linfoide/genética , Peptídeo Sintases/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Sítios de Ligação , Fator de Ligação a CCAAT , Linhagem Celular Tumoral , Metilação de DNA , Elementos E-Box , Elementos Facilitadores Genéticos , Humanos , Leucemia Linfoide/metabolismo , Peptídeo Sintases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional
10.
Leuk Res ; 50: 1-10, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27626202

RESUMO

Acute lymphoblastic leukemia (ALL) is the leading cause of cancer-related death in children, and cure rates for adults remain dismal. Further, effective treatment strategies for relapsed/refractory ALL remain elusive. We previously uncovered that ALL cells are prone to apoptosis via endoplasmic reticulum (ER) stress/unfolded protein response (UPR)-mediated mechanisms. We investigated the antineoplastic activity of pevonedistat®, a novel NEDD8-activating enzyme inhibitor that targets E3 cullin-RING ligases (CRLs) dependent proteasomal protein degradation, in ALL. Herein, we report that pevonedistat induces apoptosis in ALL cells by dysregulating the translational machinery leading to induction of proteotoxic/ER stress and UPR-mediated cell death. Mechanistically, pevonedistat led to P-eIF2a dephosphorylation causing atypical proteotoxic/ER stress from failure to halt protein translation via the UPR and upregulation of mTOR/p70S6K. Additional studies revealed that pevonedistat re-balanced the homeostasis of pro- and anti-apoptotic proteins to favor cell death through altered expression and/or activity of Mcl-1, NOXA, and BIM, suggesting that pevonedistat has a "priming" effect on ALL by altering the apoptotic threshold through modulation of Mcl-1 activity. Further, we demonstrated that pevonedistat synergizes with selected anti-leukemic agents in vitro, and prolongs survival of NSG mice engrafted with ALL cells, lending support for the use of pevonedistat as part of a multi-agent approach.


Assuntos
Ciclopentanos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirimidinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinas/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Antineoplásicos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopentanos/uso terapêutico , Estresse do Retículo Endoplasmático , Inibidores Enzimáticos , Xenoenxertos , Humanos , Camundongos , Proteína NEDD8 , Pirimidinas/uso terapêutico
11.
Endocrinology ; 146(6): 2782-90, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15774559

RESUMO

Recent findings from our laboratory and those of others demonstrated that prolactin gene expression (PRL-GE) oscillates in single living mammotropes, but little information is available on the molecular processes that contribute to this phenomenon. To elucidate the source of this activity, we generated a series of constructs containing decreasing lengths of the PRL promoter fused to a luciferase reporter gene. These constructs were injected into single cells and assayed for photonic activity. We found pulse activity with all plasmids tested, even with the smallest promoter fragment of 331 bp. Sequence analysis of this fragment identified two potential E-boxes (elements known to bind CLOCK and BMAL1 circadian proteins). Furthermore, RT-PCR of PRL cells (pituitary, MMQ, and GH(3)) revealed expression of clock and bmal1 as well as five other clock genes (per1, per2, cry1, cry2, and tim), suggesting that the circadian system may function in PRL cells. Next, we mutated the core sequences of both E-boxes within the 2.5-kb PRL promoter and found that only mutation of the E-box133 completely abolished PRL-GE pulses. EMSAs revealed that CLOCK and BMAL1 were able to bind to the E-box133 site in vitro. Our results demonstrate that PRL-GE pulses are dependent on a specific E-box binding site in the PRL promoter. Moreover, the indication that CLOCK/BMAL1 can bind to this site suggests that these circadian proteins, either alone or in conjunction with other factors, may regulate intermittent PRL promoter activity in mammotropes, perhaps by acting as a temporal switch for the on/off expression of PRL.


Assuntos
Periodicidade , Hipófise/fisiologia , Prolactina/genética , Regiões Promotoras Genéticas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição ARNTL , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas CLOCK , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Regulação da Expressão Gênica/fisiologia , Lactação/fisiologia , Dados de Sequência Molecular , Mutagênese , Hipófise/citologia , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Sprague-Dawley
12.
Mol Cell Endocrinol ; 245(1-2): 86-92, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16337733

RESUMO

Recent evidence from our laboratory demonstrated that the OCT1 protein was necessary for GnRH gene promoter pulse activity through its interaction with a specific OCT1 binding site (OCT1BS-a, -1,774/-1,781). In light of the importance of this POU homeoprotein in pulsatile function, we focused on two other highly conserved OCT1 sites within this region, OCT1BS-b (-1,694/-1,701, previously AT-b), and OCT1BS-c (-1,569/-1,562). Mutagenesis of these sites revealed that alteration of OCT1BS-c, but not OCT1BS-b, virtually abolished gene expression pulses in GT1-7 cells. EMSAs confirmed that OCT1 can bind to both sites. Taken together, our findings demonstrate clearly that more than one Oct1 binding site is necessary for GnRH promoter pulses. Moreover, the lack of an influence observed with OCT1BS-b on pulse activity indicates that OCT1 action is not general to all OCT1 sites, but specific to certain octamer sequences in the NSE region of the GnRH promoter.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Hormônio Liberador de Gonadotropina/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
13.
Mol Endocrinol ; 16(9): 2093-100, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12198245

RESUMO

Recent reports demonstrate that the rat GnRH promoter is activated in an episodic fashion in immortalized GnRH neurons, but little information is available on molecular processes that contribute to this phenomenon. In this study, we dissected the regions of the rat GnRH promoter that mediate these effects by testing a series of 5' deletion luciferase reporter constructs on the pattern of photonic emissions from single, living GT1-7 GnRH neuronal cells. Deletion analysis revealed that the region -2012/-1597 that contains the neuron-specific enhancer (NSE) was required for the elaboration of pulses of GnRH promoter activity. The importance of this region was supported by observations that episodic reporter activity could be transferred to a neutral nonpulsatile promoter (Rous sarcoma virus, RSV(180)). Immunoneutralization of Oct-1 as well as mutation of an octamer binding site located at -1787/-1783 (AT-a site) blocked the pulsatile GnRH promoter activity in GT1-7 neuronal cells. Taken together, our findings indicate that episodic GnRH gene expression is a promoter-dependent phenomenon, which is mediated by Oct-1 interaction with regulatory elements in the NSE region.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hormônio Liberador de Gonadotropina/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Células Cultivadas , Fator C1 de Célula Hospedeira , Camundongos , Fator 1 de Transcrição de Octâmero , Ratos , Elementos de Resposta/genética , Deleção de Sequência/genética
14.
Leuk Res ; 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26346348

RESUMO

BCR-ABL positive (+) acute lymphoblastic leukemia (ALL) accounts for ∼30% of cases of ALL. We recently demonstrated that 2-deoxy-d-glucose (2-DG), a dual energy (glycolysis inhibition) and ER-stress (N-linked-glycosylation inhibition) inducer, leads to cell death in ALL via ER-stress/UPR-mediated apoptosis. Among ALL subtypes, BCR-ABL+ ALL cells exhibited the highest sensitivity to 2-DG suggesting BCR-ABL expression may be linked to this increased vulnerability. To confirm the role of BCR-ABL, we constructed a NALM6/BCR-ABL stable cell line and found significant increase in 2-DG-induced apoptosis compared to control. We found that Mcl-1 was downregulated by agents inducing ER-stress and Mcl-1 levels correlated with ALL sensitivity. In addition, we showed that Mcl-1 expression is positively regulated by the MEK/ERK pathway, dependent on BCR-ABL, and further downregulated by combining ER-stressors with TKIs. We determined that energy/ER stressors led to translational repression of Mcl-1 via the AMPK/mTOR and UPR/PERK/eIF2α pathways. Taken together, our data indicate that BCR-ABL+ ALL exhibits heightened sensitivity to induction of energy and ER-stress through inhibition of the MEK/ERK pathway, and translational repression of Mcl-1 expression via AMPK/mTOR and UPR/PERK/eIF2α pathways. This study supports further consideration of strategies combining energy/ER-stress inducers with BCR-ABL TKIs for future clinical translation in BCR-ABL+ ALL patients.

15.
Endocrinology ; 143(3): 1126-33, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11861540

RESUMO

PRL gene expression in the anterior pituitary has been the focus of intensive investigation for many years, but very little information is available on the actual dynamics by which this process occurs in individual mammotrope cells. Here, we used single cell bioluminescent imaging microscopy and a recently refined reporter gene strategy to measure PRL promoter-driven gene expression (PRL-GE) in individual living primary mammotropes. Using this approach we report a new phenomenon involving repetitive on/off gene expression bursts that occurred in a distinctly noncircadian oscillatory pattern. Furthermore, we demonstrate a functional basis for these gene expression oscillations, inasmuch as PRL-GE pulses were sensitive to calcium-dependent modulation, which we show arose exclusively as changes in the shape of individual pulse episodes. Our results provide the first clear evidence that PRL-GE, in its homologous cell environment, displays oscillatory bursts of activity. Moreover, they strongly support the idea that these discrete on/off bursts of activity serve as an important determinant of the timing and level of PRL-GE under both basal and stimulated conditions.


Assuntos
Periodicidade , Hipófise/citologia , Hipófise/metabolismo , Prolactina/biossíntese , Prolactina/genética , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Feminino , Genes Reporter/genética , Vetores Genéticos , Ativação do Canal Iônico/fisiologia , Luciferases/biossíntese , Luciferases/genética , Medições Luminescentes , Microinjeções , Plasmídeos/genética , Ratos
16.
Cancer Cell Int ; 2(1): 1, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11988110

RESUMO

BACKGROUND: We describe an alternative method to determine mRNA half-life (t1/2) based on the Real-Time RT-PCR procedure. This approach was evaluated by using the beta-actin gene as a reference molecule for measuring of mRNA stability. RESULTS: Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGree&ncircledR; fluorescent dye with the VersaFluor Fluorometer System. One &mgr;g of total RNA was reverse transcribed and used as template for the amplification of a region of the beta-actin gene (231 bp). To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, beta-actin mRNAs were quantified by Real-Time RT-PCR using the SYB&RcircledR; Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the beta-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h). CONCLUSIONS: We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that beta-actin mRNA half-life can be affected by the cellular growth rate.

17.
PLoS One ; 8(8): e74420, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009772

RESUMO

The outcome of patients with resistant phenotypes of acute lymphoblastic leukemia (ALL) or those who relapse remains poor. We investigated the mechanism of cell death induced by metformin in Bp- and T-ALL cell models and primary cells, and show that metformin effectively induces apoptosis in ALL cells. Metformin activated AMPK, down-regulated the unfolded protein response (UPR) demonstrated by significant decrease in the main UPR regulator GRP78, and led to UPR-mediated cell death via up-regulation of the ER stress/UPR cell death mediators IRE1α and CHOP. Using shRNA, we demonstrate that metformin-induced apoptosis is AMPK-dependent since AMPK knock-down rescued ALL cells, which correlated with down-regulation of IRE1α and CHOP and restoration of the UPR/GRP78 function. Additionally rapamycin, a known inhibitor of mTOR-dependent protein synthesis, rescued cells from metformin-induced apoptosis and down-regulated CHOP expression. Finally, metformin induced PIM-2 kinase activity and co-treatment of ALL cells with a PIM-1/2 kinase inhibitor plus metformin synergistically increased cell death, suggesting a buffering role for PIM-2 in metformin's cytotoxicity. Similar synergism was seen with agents targeting Akt in combination with metformin, supporting our original postulate that AMPK and Akt exert opposite regulatory roles on UPR activity in ALL. Taken together, our data indicate that metformin induces ALL cell death by triggering ER and proteotoxic stress and simultaneously down-regulating the physiologic UPR response responsible for effectively buffering proteotoxic stress. Our findings provide evidence for a role of metformin in ALL therapy and support strategies targeting synthetic lethal interactions with Akt and PIM kinases as suitable for future consideration for clinical translation in ALL.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Metformina/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
18.
Mol Cancer Res ; 10(7): 969-78, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22692960

RESUMO

The ability to pair the regulation of metabolism and cellular energetics with oncogenes and tumor suppressor genes provides cancer cells with a growth and survival advantage over normal cells. We investigated the mechanism of cell death induced by 2-deoxy-D-glucose (2-DG), a sugar analog with dual activity of inhibiting glycolysis and N-linked glycosylation, in acute lymphoblastic leukemia (ALL). We found that, unlike most other cancer phenotypes in which 2-DG only inhibits cell proliferation under normoxic conditions, ALL lymphoblasts undergo apoptosis. Bp-ALL cell lines and primary cells exhibited sensitivity to 2-DG, whereas T-ALL cells were relatively resistant, revealing phenotypic differences within ALL subtypes. Cotreatment with D-mannose, a sugar essential for N-linked glycosylation, rescues 2-DG-treated ALL cells, indicating that inhibition of N-linked glycosylation and induction of ER stress and the unfolded protein response (UPR) is the predominant mechanism of 2-DG's cytotoxicity in ALL. 2-DG-treated ALL cells exhibit upregulation of P-AMPK, P-Akt, and induction of ER stress/UPR markers (IRE1α, GRP78, P-eIF2α, and CHOP), which correlate with PARP cleavage and apoptosis. In addition, we find that pharmacologic and genetic Akt inhibition upregulates P-AMPK, downregulates UPR, and sensitizes ALL cells to remarkably low doses of 2-DG (0.5 mmol/L), inducing 85% cell death and overcoming the relative resistance of T-ALL. In contrast, AMPK knockdown rescues ALL cells by upregulating the prosurvival UPR signaling. Therefore, 2-DG induces ALL cell death under normoxia by inducing ER stress, and AKT and AMPK, traditionally thought to operate predominantly on the glycolytic pathway, differentially regulate UPR activity to determine cell death or survival.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Leucemia de Células B , Leucemia de Células T , Proteína Oncogênica v-akt/metabolismo , Resposta a Proteínas não Dobradas , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Desoxiglucose/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Humanos , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Manose/farmacologia , Transdução de Sinais
19.
Mol Cancer Ther ; 10(3): 437-47, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21262957

RESUMO

AICAr is a cell-permeable nucleotide that has been used in vivo and in vitro to activate AMPK. Our previous findings have shown that AICAr as a single agent induces dose- and time-dependent growth inhibition in acute lymphoblastic leukemia (ALL) cell lines. In addition, the combination of AICAr with antifolates [methotrexate (MTX) or pemetrexed] has been shown to further potentiate AMPK activation and to lead to greater cytotoxicity and growth inhibition in leukemia and other malignant cell types. Our data presented herein show that sustained endoplasmic reticulum (ER) stress is the predominant mechanism behind the synergistic induction of cell death by the combination of AICAr plus the inhibitor of one-carbon metabolism, MTX, in Bp- and T-ALL, as evidenced by induction of several unfolded protein response markers leading to apoptosis. We also show for the first time that AICAr in combination with MTX significantly induces Akt phosphorylation in ALL. Under these conditions, the concomitant inhibition of Akt, a cellular antagonist of AMPK, leads to further upregulation of AMPK activity and alleviates AICAr plus MTX-induced ER stress and apoptosis. Therefore, we also show that the concomitant activation of AMPK actually rescues the cells from AICAr plus MTX-induced ER stress and apoptosis. Our data suggest that the effects of AMPK activation on cell death or survival differ contextually depending on its signaling alterations with related oncogenic pathways and provide insight into the reported paradoxical proapoptotic versus prosurvival effects of AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Retículo Endoplasmático/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Apoptose/efeitos dos fármacos , Carbono/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sinergismo Farmacológico , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/genética , Humanos , Metotrexato/farmacologia , Terapia de Alvo Molecular , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
Mol Cell Endocrinol ; 314(1): 75-83, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19716855

RESUMO

GnRH is released from hypothalamic neurons in coordinated pulses, but the cellular basis for this process is poorly understood. Previously, we found that secretory pulses from GT1-7 cells became synchronized with time in culture. Using this culture model, we investigated whether the gap junction proteins connexin43 (Cx43) and/or connexin26 (Cx26) are involved in this synchronization. Our results reveal that cytoplasmic densities immunoreactive for Cx43, and mRNA or protein for Cx43 increase with time in culture. Also, microinjection of day-3 cultures with siRNA for Cx43 abolished synchronized activity at day 7. Interestingly, cytoplasmic plaques, mRNA, or protein for Cx26 remained stable with culture time and Cx26 siRNA administration did not alter secretory activity. Our findings demonstrate that Cx43, but not Cx26 is necessary for synchronized secretory activity in these GT1-7 cultures and raise the possibility that Cx43-related gap junctions may be important in GnRH neuronal coordination in the hypothalamus.


Assuntos
Conexina 43/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Conexina 26 , Conexina 43/genética , Conexinas/genética , Conexinas/metabolismo , Hipotálamo/citologia , Masculino , Camundongos , Neurônios/citologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa