Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(2): 101533, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973336

RESUMO

Therapeutic antibody development requires discovery of an antibody molecule with desired specificities and drug-like properties. For toxicological studies, a therapeutic antibody must bind the ortholog antigen with a similar affinity to the human target to enable relevant dosing regimens, and antibodies falling short of this affinity design goal may not progress as therapeutic leads. Herein, we report the novel use of mammalian recombination signal sequence (RSS)-directed recombination for complementarity-determining region-targeted protein engineering combined with mammalian display to close the species affinity gap of human interleukin (IL)-13 antibody 731. This fully human antibody has not progressed as a therapeutic in part because of a 400-fold species affinity gap. Using this nonhypothesis-driven affinity maturation method, we generated multiple antibody variants with improved IL-13 affinity, including the highest affinity antibody reported to date (34 fM). Resolution of a cocrystal structure of the optimized antibody with the cynomolgus monkey (or nonhuman primate) IL-13 protein revealed that the RSS-derived mutations introduced multiple successive amino-acid substitutions resulting in a de novo formation of a π-π stacking-based protein-protein interaction between the affinity-matured antibody heavy chain and helix C on IL-13, as well as an introduction of an interface-distant residue, which enhanced the light chain-binding affinity to target. These mutations synergized binding of heavy and light chains to the target protein, resulting in a remarkably tight interaction, and providing a proof of concept for a new method of protein engineering, based on synergizing a mammalian display platform with novel RSS-mediated library generation.


Assuntos
Anticorpos , Interleucina-13 , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Animais , Anticorpos/genética , Anticorpos/imunologia , Afinidade de Anticorpos , Humanos , Interleucina-13/genética , Interleucina-13/imunologia , Macaca fascicularis , Mamíferos , Recombinação Genética
2.
BMC Pediatr ; 22(1): 305, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610621

RESUMO

BACKGROUND: A thorough examination (especially those including visual functional evaluation) is very important in children's eye-development during clinical practice, when they encountered with unusual excessive hyperopia especially accompanied with other possible complications. Genetic testing would be beneficial for early differential diagnosis as blood sampling is more convenient than all other structural imaging capture tests or functional tests which need children to cooperate well. Thus genetic testing helps us to filter other possible multi-systemic diseases in children patients with eye disorder. CASE PRESENTATION: A 3-year-old and an 8-year-old boy, both Chinese children clinically manifested as bilateral excessive hyperopia (≥+10.00), severe amblyopia and exotropia, have been genetically diagnosed as Senior-Loken syndrome-5 (SLSN5) and isolated posterior microphthalmos (MCOP6), respectively. CONCLUSIONS: This report demonstrates the importance of genetic diagnosis before a clinical consult. When children are too young to cooperate with examinations, genetic testing is valuable for predicting other systemic diseases and eye-related development and for implementing early interventions for the disease.


Assuntos
Exotropia , Hiperopia , Microftalmia , Criança , Testes Genéticos , Humanos , Hiperopia/diagnóstico , Hiperopia/genética , Masculino , Microftalmia/genética
3.
Bioorg Med Chem Lett ; 36: 127786, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493627

RESUMO

The retinoic acid receptor-related orphan nuclear receptor gamma t (RORγt), which is a promising therapeutic target for immune diseases, is a major transcription factor of genes related to psoriasis pathogenesis, such as interleukin (IL)-17A, IL-22, and IL-23R. Inspired by the co-crystal structure of RORγt, a 6-oxo-4-phenyl-hexanoic acid derivative 6a was designed, synthesized, and identified as a ligand of RORγt. The structure-activity relationship (SAR) studies in 6a, which focus on the improvement of its membrane permeability profile by introducing chlorine atoms, led to finding 12a, which has a potent RORγt inhibitory activity and a favorable pharmacokinetic profile.


Assuntos
Caproatos/farmacologia , Descoberta de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Caproatos/química , Caproatos/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Relação Estrutura-Atividade
4.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 46(2): 162-168, 2021 Feb 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-33678653

RESUMO

OBJECTIVES: To investigate angle Kappa and diopter distribution in myopic patients and the changes of angle Kappa and corneal morphology after Sub-Bowman-Keratomileusis (SBK), and to analyze the effects of the surgery on corneal morphologic changes and the patients' near fixation characteristics. METHODS: The clinical data of 134 myopic patients (268 eyes) undergoing SBK from August 2015 to August 2016 were retrospectively analyzed. Angle Kappa, corneal curvature in the central corneal region of 3 mm, and post-corneal Diff value were measured by Orbscan IIz Corneal Topography System before operation, 1 month and 6 months after operation. According to the values of angle Kappa before SBK, the patients were divided into 2 groups: the large K group (angle Kappa≥5°, 71 eyes) and the small K group (angle Kappa<5°, 197 eyes). Correlation analysis of the factors influencing angle Kappa at 6 months after operation was performed. RESULTS: In the large K group, angle Kappa was (5.67±0.65)°, spherical equivalent was (-4.84±2.32) D, and angle Kappa was decreased after operation (both P<0.05) with the increased decreasing range over time. In the small K group, angle Kappa was (3.51±1.08)°, spherical equivalent was (-5.78±2.63) D, angle Kappa was increased after operation with decreased increasing range over time, and the difference was statistically significant between 6 months after operation and before operation (P<0.05).The post-corneal Diff value of the 2 groups was increased after operation (all P<0.001), and was decreased from 1 month to 6 months after surgery. The corneal curvature in the central corneal region of 3 mm of the 2 groups 1 month after operation was decreased significantly (both P<0.001). From 1 month to 6 months after operation, the corneal curvature of the large K group tended to be stable, while the corneal curvature of the small K group tended to increase. There was no significant correlation between the changes of angle Kappa 6 months after operation and the changes of the corneal central curvature or the post-corneal Diff value (both P>0.05), but the changes of angle Kappa 6 months after operation was positively correlated with corneal cutting thickness (rlarge K group=0.398, rsmall K group=0.218, both P<0.05) and it was negatively correlated with preoperative diopter (rlarge K group=-0.283, rsmall K group=-0.233, both P<0.05). CONCLUSIONS: The angle Kappa is decreased in low-moderate myopia patients with large angle Kappa, while is increased in high myopia patients with small angle Kappa after SBK. Myopia patients after SBK will look for the new balance of the binocular accommodation and vergence function for improving the comfort in the near-work situations.


Assuntos
Ceratomileuse Assistida por Excimer Laser In Situ , Miopia , Córnea/cirurgia , Humanos , Miopia/cirurgia , Refração Ocular , Estudos Retrospectivos
5.
Drug Metab Dispos ; 48(6): 508-514, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193357

RESUMO

Experiments designed to identify the mechanism of cytochrome P450 inactivation are critical to drug discovery. Small molecules irreversibly inhibit P450 enzymatic activity via two primary mechanisms: apoprotein adduct formation or heme modification. Understanding the interplay between chemical structures of reactive electrophiles and the impact on CYP3A4 structure and function can ultimately provide insights into drug design to minimize P450 inactivation. In a previous study, raloxifene and N-(1-pyrene) iodoacetamide (PIA) alkylated CYP3A4 in vitro; however, only raloxifene influenced enzyme activity. Here, two alkylating agents with cysteine selectivity, PIA and pyrene maleimide (PM), were used to investigate this apparent compound-dependent disconnect between CYP3A4 protein alkylation and activity loss. The compound's effect on 1) enzymatic activity, 2) carbon monoxide (CO) binding capacity, 3) intact heme content, and 4) protein conformation were measured. Results showed that PM had a large time-dependent loss of enzyme activity, whereas PIA did not. The differential effect on enzymatic activity between PM and PIA was mirrored in the CO binding data. Despite disruption of CO binding, neither compound affected the heme concentrations, inferring there was no destruction or alkylation of the heme. Lastly, differential scanning fluorescence showed PM-treated CYP3A4 caused a shift in the onset temperature required to induce protein aggregation, which was not observed for CYP3A4 treated with PIA. In conclusion, alkylation of CYP3A4 apoprotein can have a variable impact on catalytic activity, CO binding, and protein conformation that may be compound-dependent. These results highlight the need for careful interpretation of experimental results aimed at characterizing the nature of P450 enzyme inactivation. SIGNIFICANCE STATEMENT: Understanding the mechanism of CYP3A4 time-dependent inhibition is critical to drug discovery. In this study, we use two cysteine-targeting electrophiles to probe how subtle variation in inhibitor structure may impact the mechanism of CYP3A4 time-dependent inhibition and confound interpretation of traditional diagnostic experiments. Ultimately, this simplified system was used to reveal insights into CYP3A4 biochemical behavior. The insights may have implications that aid in understanding the susceptibility of CYP enzymes to the effects of electrophilic intermediates generated via bioactivation.


Assuntos
Apoproteínas/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Alquilação/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Monóxido de Carbono/metabolismo , Cisteína/química , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/química , Ensaios Enzimáticos , Iodoacetamida/análogos & derivados , Iodoacetamida/química , Iodoacetamida/farmacologia , Maleimidas/química , Maleimidas/farmacologia , Oxirredução/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 293(38): 14678-14688, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30068552

RESUMO

Fibroblast growth factor 21 (FGF21), an endocrine hormone in the FGF family, plays a critical role in regulating metabolic homeostasis and has emerged as a therapeutic target for metabolic diseases, including Type 2 diabetes mellitus. FGF21 functions through a receptor complex that consists of an FGF receptor (FGFR) and a co-receptor ß-Klotho. Here, we identify and biochemically and structurally characterize 39F7, a high-affinity agonistic monoclonal antibody (mAb) against ß-Klotho that mimics FGF21 function. The co-crystal structure of ß-Klotho KL1 domain in complex with 39F7 Fab revealed that the recognition of 39F7 is centered on Trp-295 of ß-Klotho in a FGF21 noncompetitive manner. KL1 adopts a (ß/α)8 TIM barrel fold which resembles that of ß-glycosylceramidase, but lacks molecular features for enzymatic activity, suggesting that KL1 functions as a scaffold protein instead. In vitro characterization demonstrated that, although 39F7 does not compete with FGF21, it is specific for ß-Klotho/FGFR1c activation. Furthermore, the agonistic activity of 39F7 required the full IgG molecule to be bivalent, suggesting that 39F7 functions by promoting receptor/co-receptor dimerization. Supported by negative stain EM analysis of full-length ß-Klotho, we propose a molecular model wherein the agonistic antibody 39F7 acts in a ß-Klotho- and FGFR1c-dependent manner, mimicking FGF21 activity. More importantly, 39F7 offers promising therapeutic potential in the axis of FGF21 signaling as an antibody therapy alternative to FGF21 analogs for treatment of metabolic diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Membrana/imunologia , Animais , Afinidade de Anticorpos , Células CHO , Cricetulus , Cristalografia por Raios X , Humanos , Proteínas Klotho , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Ligação Proteica , Conformação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
7.
J Biol Chem ; 293(32): 12634-12646, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29794134

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença , Glicoproteínas de Membrana/química , Proteínas Mutantes/química , Receptores Imunológicos/química , Doença de Alzheimer/patologia , Cristalografia por Raios X , Células Dendríticas/química , Células Dendríticas/patologia , Variação Genética , Humanos , Ligantes , Macrófagos/química , Macrófagos/patologia , Glicoproteínas de Membrana/genética , Microglia/química , Microglia/patologia , Proteínas Mutantes/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Osteoclastos/química , Osteoclastos/patologia , Conformação Proteica , Domínios Proteicos/genética , Receptores Imunológicos/genética
8.
J Biol Chem ; 290(45): 27261-27270, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26359499

RESUMO

JAK (Janus family of cytoplasmic tyrosine kinases) family tyrosine kinase 2 (TYK2) participates in signaling through cytokine receptors involved in immune responses and inflammation. JAKs are characterized by dual kinase domain: a tyrosine kinase domain (JH1) that is preceded by a pseudokinase domain (JH2). The majority of disease-associated mutations in JAKs map to JH2, demonstrating its central regulatory function. JH2s were considered catalytically inactive, but JAK2 JH2 was found to have low autoregulatory catalytic activity. Whether the other JAK JH2s share ATP binding and enzymatic activity has been unclear. Here we report the crystal structure of TYK2 JH2 in complex with adenosine 5'-O-(thiotriphosphate) (ATP-γS) and characterize its nucleotide binding by biochemical and biophysical methods. TYK2 JH2 did not show phosphotransfer activity, but it binds ATP and the nucleotide binding stabilizes the protein without inducing major conformational changes. Mutation of the JH2 ATP-binding pocket increased basal TYK2 phosphorylation and downstream signaling. The overall structural characteristics of TYK2 JH2 resemble JAK2 JH2, but distinct stabilizing molecular interactions around helix αAL in the activation loop provide a structural basis for differences in substrate access and catalytic activities among JAK family JH2s. The structural and biochemical data suggest that ATP binding is functionally important for both TYK2 and JAK2 JH2s, whereas the regulatory phosphorylation appears to be a unique property of JAK2. Finally, the co-crystal structure of TYK2 JH2 complexed with a small molecule inhibitor demonstrates that JH2 is accessible to ATP-competitive compounds, which offers novel approaches for targeting cytokine signaling as well as potential therapeutic applications.


Assuntos
TYK2 Quinase/química , TYK2 Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Humanos , Janus Quinase 1/química , Janus Quinase 2/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , TYK2 Quinase/genética
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 41(2): 174-81, 2016 Feb.
Artigo em Zh | MEDLINE | ID: mdl-26932216

RESUMO

OBJECTIVE: To compare the results of the three methods of Suresight handheld autorefractor, table-mounted autorefractor and retinoscopy in examination of juveniles patients with or without cycloplegia.
 METHODS: Firstly, 156 eyes of 78 juveniles (5 to 17 years old) were examined by using WelchAllyn Suresight handheld autorefractor and NIDEK ARK-510A table-mounted autorefractor with or without cycloplegia; secondly, retinoscopy was performed with cycloplegia.
 RESULTS: The spherical power measured by methods without cycloplegia were significantly greater than those measured with cycloplegia (P<0.05); without cycloplegia, there was no significant difference in spherical power, cylindrical power and cylindrical axis between Suresight handheld autorefractor and retinoscopy (P>0.05). These results were highly consistent, suggesting a tendency towards a short sight. However, the spherical power and cylindrical power measured by table-mounted autorefractor was significantly different (P<0.05); with cycloplegia, there was significant difference in spherical power between Suresight handheld autorefractor and retinoscopy (P<0.05).
 CONCLUSION: Cycloplegic retinoscopy is necessary for juvenile refraction examination. Under natural pupil situation, Suresight handheld autorefractor is better than table-mounted autorefractor, though both show a myopia tendency. Nevertheless, table-mounted autorefractor can be taken as a recommendation for the prescription of lens trial. As a strong reference for subjective optometry, retinoscopy should be the gold standard for measuring refractive errors.


Assuntos
Optometria/instrumentação , Optometria/métodos , Refração Ocular , Adolescente , Criança , Pré-Escolar , Humanos , Miopia/diagnóstico , Erros de Refração , Retinoscopia
10.
Tumour Biol ; 36(10): 7457-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25908172

RESUMO

This study was aimed to identify the prognostic risk markers for thyroid papillary carcinoma (TPC) by bioinformatics. The clinical data of TPC and their microRNAs (miRNAs) and genes expression profile data were downloaded from The Cancer Genome Atlas. Elastic net-Cox's proportional regression hazards model (EN-COX) was used to identify the prognostic associated factors. The receiver operating characteristic (ROC) curve and Kaplan-Meier (KM) curve were used to screen the significant prognostic risk miRNA and genes. Then, the target genes of the obtained miRNAs were predicted followed by function prediction. Finally, the significant risk genes were performed literature mining and function analysis. Total 1046 miRNAs and 20531 genes in 484 cases samples were identified after data preprocessing. From the EN-COX model, 30 prognostic risk factors were obtained. Based on the 30 risk factors, 3 miRNAs and 11 genes were identified from the ROC and KM curves. The target genes of miRNA-342 such as B-cell CLL/lymphoma 2 (BCL2) were mainly enriched in the biological process related to cellular metabolic process and Disease Ontology terms of lymphoma. The target genes of miRNA-93 were mainly enriched in the pathway of G1 phase. Among the 11 prognostic risk genes, v-maf avian musculoaponeurotic fibrosarcoma oncogene homologue F (MAFF), SRY (sex-determining region Y)-box 4 (SOX4), and retinoic acid receptor, alpha (RARA) encoded transcription factors. Besides, RARA was enriched in four pathways. These prognostic markers such as miRNA-93, miRNA-342, RARA, MAFF, SOX4, and BCL2 may be used as targets for TPC chemoprevention.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Papilar/genética , Biologia Computacional/métodos , MicroRNAs/genética , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Carcinoma Papilar/mortalidade , Carcinoma Papilar/patologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Taxa de Sobrevida , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia
11.
J Biol Chem ; 288(2): 1307-16, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23184939

RESUMO

Dipeptidyl peptidase IV (DPP-IV) degrades the incretin hormone glucagon-like peptide 1 (GLP-1). Small molecule DPP-IV inhibitors have been used as treatments for type 2 diabetes to improve glucose tolerance. However, each of the marketed small molecule drugs has its own limitation in terms of efficacy and side effects. To search for an alternative strategy of inhibiting DPP-IV activity, we generated a panel of tight binding inhibitory mouse monoclonal antibodies (mAbs) against rat DPP-IV. When tested in vitro, these mAbs partially inhibited the GLP-1 cleavage activity of purified enzyme and rat plasma. To understand the partial inhibition, we solved the co-crystal structure of one of the mAb Fabs (Ab1) in complex with rat DPP-IV. Although Ab1 does not bind at the active site, it partially blocks the side opening, which prevents the large substrates such as GLP-1 from accessing the active site, but not small molecules such as sitagliptin. When Ab1 was tested in vivo, it reduced plasma glucose and increased plasma GLP-1 concentration during an oral glucose tolerance test in rats. Together, we demonstrated the feasibility of using mAbs to inhibit DPP-IV activity and to improve glucose tolerance in a diabetic rat model.


Assuntos
Anticorpos Monoclonais/imunologia , Dipeptidil Peptidase 4/imunologia , Teste de Tolerância a Glucose , Animais , Anticorpos Monoclonais/química , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ratos , Ratos Zucker
12.
Proc Natl Acad Sci U S A ; 108(18): 7379-84, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502526

RESUMO

Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH activity, therefore, presents a promising new therapeutic strategy for the treatment of pain and other neurological-related or inflammatory disorders. Nearly all FAAH inhibitors known to date attain their binding potency through a reversible or irreversible covalent modification of the nucleophile Ser241 in the unusual Ser-Ser-Lys catalytic triad. Here, we report the discovery and mechanism of action of a series of ketobenzimidazoles as unique and potent noncovalent FAAH inhibitors. Compound 2, a representative of these ketobenzimidazoles, was designed from a series of ureas that were identified from high-throughput screening. While urea compound 1 is characterized as an irreversible covalent inhibitor, the cocrystal structure of FAAH complexed with compound 2 reveals that these ketobenzimidazoles, though containing a carbonyl moiety, do not covalently modify Ser241. These inhibitors achieve potent inhibition of FAAH activity primarily from shape complementarity to the active site and through numerous hydrophobic interactions. These noncovalent compounds exhibit excellent selectivity and good pharmacokinetic properties. The discovery of this distinctive class of inhibitors opens a new avenue for modulating FAAH activity through nonmechanism-based inhibition.


Assuntos
Amidoidrolases/antagonistas & inibidores , Benzimidazóis/isolamento & purificação , Benzimidazóis/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Modelos Moleculares , Animais , Benzimidazóis/farmacocinética , Cumarínicos , Cristalização , Inibidores Enzimáticos/farmacocinética , Escherichia coli , Humanos , Estrutura Molecular , Ratos , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem , Ureia/metabolismo
13.
J Biol Chem ; 287(33): 27326-34, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22718757

RESUMO

NF-κB-inducing kinase (NIK) is a central component in the non-canonical NF-κB signaling pathway. Excessive NIK activity is implicated in various disorders, such as autoimmune conditions and cancers. Here, we report the first crystal structure of truncated human NIK in complex with adenosine 5'-O-(thiotriphosphate) at a resolution of 2.5 Å. This truncated protein is a catalytically active construct, including an N-terminal extension of 60 residues prior to the kinase domain, the kinase domain, and 20 residues afterward. The structure reveals that the NIK kinase domain assumes an active conformation in the absence of any phosphorylation. Analysis of the structure uncovers a unique role for the N-terminal extension sequence, which stabilizes helix αC in the active orientation and keeps the kinase domain in the catalytically competent conformation. Our findings shed light on the long-standing debate over whether NIK is a constitutively active kinase. They also provide a molecular basis for the recent observation of gain-of-function activity for an N-terminal deletion mutant (ΔN324) of NIK, leading to constitutive non-canonical NF-κB signaling with enhanced B-cell adhesion and apoptosis resistance.


Assuntos
Proteínas Serina-Treonina Quinases/química , Tionucleotídeos/química , Apoptose/fisiologia , Linfócitos B/enzimologia , Adesão Celular/fisiologia , Linhagem Celular , Cristalografia por Raios X , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência , Tionucleotídeos/metabolismo , Quinase Induzida por NF-kappaB
14.
Bioorg Med Chem Lett ; 23(16): 4608-16, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845219

RESUMO

Sphingosine-1-phosphate (S1P) signaling plays a vital role in mitogenesis, cell migration and angiogenesis. Sphingosine kinases (SphKs) catalyze a key step in sphingomyelin metabolism that leads to the production of S1P. There are two isoforms of SphK and observations made with SphK deficient mice show the two isoforms can compensate for each other's loss. Thus, inhibition of both isoforms is likely required to block SphK dependent angiogenesis. A structure based approach was used to design and synthesize a series of SphK inhibitors resulting in the identification of the first potent inhibitors of both isoforms of human SphK. Additionally, to our knowledge, this series of inhibitors contains the only sufficiently potent inhibitors of murine SphK1 with suitable physico-chemical properties to pharmacologically interrogate the role of SphK1 in rodent models and to reproduce the phenotype of SphK1 (-/-) mice.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Bibliotecas de Moléculas Pequenas/síntese química , Animais , Células Cultivadas , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Estrutura Molecular , Isoformas de Proteínas/química , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 21(8): 2492-6, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21392988

RESUMO

Starting from a series of ureas that were determined to be mechanism-based inhibitors of FAAH, several spirocyclic ureas and lactams were designed and synthesized. These efforts identified a series of novel, noncovalent FAAH inhibitors with in vitro potency comparable to known covalent FAAH inhibitors. The mechanism of action for these compounds was determined through a combination of SAR and co-crystallography with rat FAAH.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/química , Amidoidrolases/metabolismo , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Humanos , Lactamas/síntese química , Lactamas/química , Lactamas/farmacocinética , Ratos , Compostos de Espiro/química , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/química , Ureia/farmacocinética
16.
Structure ; 17(1): 96-104, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19141286

RESUMO

MAP2Ks are dual-specificity protein kinases functioning at the center of three-tiered MAP kinase modules. The structure of the kinase domain of the MAP2K MEK6 with phosphorylation site mimetic aspartic acid mutations (MEK6/DeltaN/DD) has been solved at 2.3 angstroms resolution. The structure reveals an autoinhibited elongated ellipsoidal dimer. The enzyme adopts an inactive conformation, based upon structural queues, despite the phosphomimetic mutations. Gel filtration and small-angle X-ray scattering analysis confirm that the crystallographically observed ellipsoidal dimer is a feature of MEK6/DeltaN/DD and full-length unphosphorylated wild-type MEK6 in solution. The interface includes the phosphate binding ribbon of each subunit, part of the activation loop, and a rare "arginine stack" between symmetry-related arginine residues in the N-terminal lobe. The autoinhibited structure likely confers specificity on active MAP2Ks. The dimer may also serve the function in unphosphorylated MEK6 of preventing activation loop phosphorylation by inappropriate kinases.


Assuntos
MAP Quinase Quinase 1/química , MAP Quinase Quinase 6/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 6/antagonistas & inibidores , MAP Quinase Quinase 6/metabolismo , Camundongos , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Ratos , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
17.
Commun Biol ; 4(1): 526, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953337

RESUMO

The heterodimer of ATP-binding cassette transporter ABCG5 and ABCG8 mediates the excretion of sterols from liver and intestine, playing a critical role in cholesterol homeostasis. Here, we present the cryo-EM structure of ABCG5/G8 in complex with the Fab fragments from two monoclonal antibodies at 3.3Å resolution. The high-resolution structure reveals a unique dimer interface between the nucleotide-binding domains (NBD) of opposing transporters, consisting of an ordered network of salt bridges between the conserved NPXDFXXD motif and serving as a pivot point that may be important for the transport cycle. While mAb 11F4 increases the ATPase activity potentially by stabilization of the NBD dimer formation, mAb 2E10 inhibits ATP hydrolysis, likely by restricting the relative movement between the RecA and helical domain of ABCG8 NBD. Our study not only provides insights into the structural elements important for the transport cycle but also reveals novel epitopes for potential therapeutic interventions.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Microscopia Crioeletrônica/métodos , Lipoproteínas/química , Lipoproteínas/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica
18.
J Ophthalmol ; 2020: 3039180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377415

RESUMO

OBJECTIVES: To summarize the clinical manifestations, diagnosis, treatment, and prognosis for inferior oblique muscle ectopia (IO-E). Subjects and Methods. Patients diagnosed with IO-E during strabismus surgery from March 2017 to September 2018 were included in this retrospective, cross-sectional study. All patients received preoperative Krimsky test, synoptophore, cycloplegia refraction, fundus torsion, and other strabismus-related specific tests. The anatomic variations of IO-E were always discovered during surgical procedure. Postoperative eye position and binocular visual function (BVF) were all reviewed in early days after operation. RESULTS: A total of 7 patients were enrolled in this study with an average age of 6.4 ± 3.8 yrs. They all presented with significant exotropia and unilateral (or bilateral) overelevation in adduction (OEA). No compensatory head position was detected. Some of them had vertical deviation, V pattern, or excyclotropia, which were indicated by fundus torsion. Monocular or binocular IO-E was distinguished during the surgery, and it could be classified into two types according to its anatomic features. In surgery, the ectopic IO muscle bundle was restored, and different IO weakening methods were employed. Meanwhile, the horizontal deviation was also corrected according to the preoperative examination. Eyes of all patients were properly aligned in the primary position after surgery. Varying degrees of BVF appeared in 3 cases. CONCLUSIONS: IO-E is a rare congenital dysplasia variation of the extraocular muscle, which could appear as inferior oblique overaction. It is difficult to diagnose before surgery, and weakening the overactive ectopic inferior oblique was required for better prognosis if this condition was confirmed during surgery.

19.
Sci Adv ; 6(25): eabb1989, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32596471

RESUMO

The intestinal absorption of cholesterol is mediated by a multipass membrane protein, Niemann-Pick C1-Like 1 (NPC1L1), the molecular target of a cholesterol lowering therapy ezetimibe. While ezetimibe gained Food and Drug Administration approval in 2002, its mechanism of action has remained unclear. Here, we present two cryo-electron microscopy structures of NPC1L1, one in its apo form and the other complexed with ezetimibe. The apo form represents an open state in which the N-terminal domain (NTD) interacts loosely with the rest of NPC1L1, leaving the NTD central cavity accessible for cholesterol loading. The ezetimibe-bound form signifies a closed state in which the NTD rotates ~60°, creating a continuous tunnel enabling cholesterol movement into the plasma membrane. Ezetimibe blocks cholesterol transport by occluding the tunnel instead of competing with cholesterol binding. These findings provide insight into the molecular mechanisms of NPC1L1-mediated cholesterol transport and ezetimibe inhibition, paving the way for more effective therapeutic development.

20.
Blood Adv ; 4(17): 4180-4194, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32886754

RESUMO

Multiple myeloma (MM) is a hematologic malignancy that is characterized by the accumulation of abnormal plasma cells (PCs) in the bone marrow (BM). Patient outcome may be improved with BiTE (bispecific T-cell engager) molecules, which redirect T cells to lyse tumor cells. B-cell maturation antigen (BCMA) supports PC survival and is highly expressed on MM cells. A half-life extended anti-BCMA BiTE molecule (AMG 701) induced selective cytotoxicity against BCMA-expressing MM cells (average half-maximal effective concentration, 18.8 ± 14.8 pM), T-cell activation, and cytokine release in vitro. In a subcutaneous mouse xenograft model, at all doses tested, AMG 701 completely inhibited tumor formation (P < .001), as well as inhibited growth of established tumors (P ≤ .001) and extended survival in an orthotopic MM model (P ≤ .01). To evaluate AMG 701 bioactivity in cynomolgus monkeys, a PC surface phenotype and specific genes were defined to enable a quantitative digital droplet polymerase chain reaction assay (sensitivity, 0.1%). Dose-dependent pharmacokinetic and pharmacodynamic behavior was observed, with depletion of PC-specific genes reaching 93% in blood and 85% in BM. Combination with a programmed cell death protein 1 (PD-1)-blocking antibody significantly increased AMG 701 potency in vitro. A model of AMG 701 binding to BCMA and CD3 indicates that the distance between the T-cell and target cell membranes (ie, the immunological synapse) is similar to that of the major histocompatibility complex class I molecule binding to a T-cell receptor and suggests that the synapse would not be disrupted by the half-life extending Fc domain. These data support the clinical development of AMG 701.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Animais , Complexo CD3 , Macaca fascicularis , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Plasmócitos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa