Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 172(1-2): 10-13, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328907

RESUMO

Psychiatric genetic studies have drawn associations between human cognitive traits and noncoding genomic variants. However, the mechanistic effects of these variants are unclear. By weaving in strands of genomic data from developing human brains, de la Torre-Ubieta et al. tie disease-associated loci to functional enhancers, target genes, and putatively affected cell types.


Assuntos
Cromatina , Estudo de Associação Genômica Ampla , Cognição , Humanos , Neurogênese , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Neurobiol Dis ; 85: 122-129, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26462817

RESUMO

Kindling is a phenomenon of activity-dependent neural circuit plasticity induced by repeated seizures that results in progressive permanent increases in susceptibility to epilepsy. As the permanent structural and functional modifications induced by kindling include a diverse range of molecular, cellular, and functional alterations in neural circuits, it is of interest to determine if genetic background associated with seizure-induced plasticity might also influence plasticity in neural circuitry underlying other behaviors. Outbred Sprague-Dawley (SD) rats were selected and bred for ~15 generations for "fast' or "slow" rates of kindling development in response to stimulation of the perforant path input to the hippocampus. After 7-8 generations of selection and breeding, consistent phenotypes of "fast" and "slow" kindling rates were observed. By the 15th generation "fast" kindling rats referred to as Perforant Path Kindling Susceptible (PPKS) rats demonstrated a kindling rate of 10.7 ± 1.1 afterdischarges (ADs) to the milestone of the first secondary generalized (Class V) seizure, which differed significantly from "slow" kindling Perforant Path Kindling Resistant (PPKR) rats requiring 25.5 ± 2.0 ADs, and outbred SD rats requiring 16.8 ± 2.5 ADs (p<0.001, ANOVA). Seizure-naïve adult PPKS and PPKR rats from offspring of this generation and age-matched adult outbred SD rats were compared in validated behavioral measures including the open field test as a measure of exploratory activity, the Morris water maze as a measure of hippocampal spatial memory, and fear conditioning as a behavioral paradigm of associative fear learning. The PPKS ("fast" kindling) strain with increased susceptibility to seizure-induced plasticity demonstrated statistically significant increases in motor exploratory activity in the open field test and reduced spatial learning the Morris water maze, but demonstrated normal fear conditioned learning comparable to outbred SD rats and the "slow" kindling-resistant PPKR strain. These results confirm that selection and breeding on the basis of responses to repeated pathway activation by stimulation can produce enduring modification of genetic background influencing behavior. These observations also suggest that genetic background underlying susceptibility or resistance to seizure-induced plasticity in hippocampal circuitry also differentially influences distinct behaviors and learning that depend on circuitry activated by the kindling selection process, and may have implications for associations between epilepsy, comorbid behavioral conditions, and cognition.


Assuntos
Excitação Neurológica/fisiologia , Via Perfurante/fisiopatologia , Fenótipo , Ratos Sprague-Dawley , Especificidade da Espécie , Animais , Animais não Endogâmicos , Percepção Auditiva/fisiologia , Condicionamento Psicológico/fisiologia , Estimulação Elétrica/métodos , Comportamento Exploratório/fisiologia , Medo/fisiologia , Feminino , Predisposição Genética para Doença , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Rememoração Mental/fisiologia , Atividade Motora/fisiologia , Memória Espacial/fisiologia
3.
Biol Sex Differ ; 15(1): 47, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844994

RESUMO

BACKGROUND: Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. METHODS: In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks. RESULTS: We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. CONCLUSION: Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.


We sought to understand why females have higher rates of Alzheimer's disease, and males have higher rates of autism. One idea was that the female brain at baseline may be more similar to an Alzheimer's brain, so it is easier for them to shift into that state (likewise, males may be more similar to autism). To test this, we examined gene expression differences between brains of biological males and biological females. While all people have the same ~ 25,000 genes, each gene can be on or off ('expressed') to different extents. Overall, we found that there were differences in gene expression between males and females in all brain regions tested but more differences in some brain regions than others. By looking at the role of these genes we estimate that female immune system processes might be more active in the brain. We also found female brain gene expression looked slightly more like people with Alzheimer's compared to people without Alzheimer's, which may explain why females get Alzheimer's disease more easily. However, the male brain gene expression did not look more like autism, suggesting that the reason males have higher rates of autism is complex and needs further investigation.


Assuntos
Doença de Alzheimer , Transtorno Autístico , Encéfalo , Caracteres Sexuais , Humanos , Doença de Alzheimer/genética , Masculino , Feminino , Transtorno Autístico/genética , Encéfalo/metabolismo , Expressão Gênica
4.
Biol Psychiatry ; 94(6): 466-478, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36803612

RESUMO

BACKGROUND: Genome-wide association studies have discovered blocks of common variants-likely transcriptional-regulatory-associated with major depressive disorder (MDD), though the functional subset and their biological impacts remain unknown. Likewise, why depression occurs in females more frequently than males is unclear. We therefore tested the hypothesis that risk-associated functional variants interact with sex and produce greater impact in female brains. METHODS: We developed techniques to directly measure regulatory variant activity and sex interactions using massively parallel reporter assays in the mouse brain in vivo, in a cell type-specific manner, and applied these approaches to measure activity of >1000 variants from >30 MDD loci. RESULTS: We identified extensive sex-by-allele effects in mature hippocampal neurons, suggesting that sex-differentiated impacts of genetic risk may underlie sex bias in disease. Unbiased informatics approaches indicated that functional MDD variants recurrently disrupt a number of transcription factor binding motifs, including those of sex hormone receptors. We confirmed a role for the latter by performing massively parallel reporter assays in neonatal mice on the day of birth (during a sex-differentiating hormone surge) and hormonally quiescent juveniles. CONCLUSIONS: Our study provides novel insights into the influence of age, biological sex, and cell type on regulatory variant function and provides a framework for in vivo parallel assays to functionally define interactions between organismal variables such as sex and regulatory variation. Moreover, we experimentally demonstrate that a portion of the sex differences seen in MDD occurrence may be a product of sex-differentiated effects at associated regulatory variants.


Assuntos
Transtorno Depressivo Maior , Masculino , Feminino , Animais , Camundongos , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Depressão , Encéfalo , Polimorfismo de Nucleotídeo Único
5.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849260

RESUMO

In females, the hippocampus, a critical brain region for coordination of learning, memory, and behavior, displays altered physiology and behavioral output across the estrous or menstrual cycle. However, the molecular effectors and cell types underlying these observed cyclic changes have only been partially characterized to date. Recently, profiling of mice null for the AMPA receptor trafficking gene Cnih3 have demonstrated estrous-dependent phenotypes in dorsal hippocampal synaptic plasticity, composition, and learning/memory. We therefore profiled dorsal hippocampal transcriptomes from female mice in each estrous cycle stage, and contrasted it with that of males, across wild-type (WT) and Cnih3 mutants. In wild types, we identified only subtle differences in gene expression between the sexes, while comparing estrous stages to one another revealed up to >1000 differentially expressed genes (DEGs). These estrous-responsive genes are especially enriched in gene markers of oligodendrocytes and the dentate gyrus, and in functional gene sets relating to estrogen response, potassium channels, and synaptic gene splicing. Surprisingly, Cnih3 knock-outs (KOs) showed far broader transcriptomic differences between estrous cycle stages and males. Moreover, Cnih3 knock-out drove subtle but extensive expression changes accentuating sex differential expression at diestrus and estrus. Altogether, our profiling highlights cell types and molecular systems potentially impacted by estrous-specific gene expression patterns in the adult dorsal hippocampus, enabling mechanistic hypothesis generation for future studies of sex-differential neuropsychiatric function and dysfunction. Moreover, these findings suggest an unrecognized role of Cnih3 in buffering against transcriptional effects of estrous, providing a candidate molecular mechanism to explain estrous-dependent phenotypes observed with Cnih3 loss.


Assuntos
Ciclo Estral , Hipocampo , Animais , Feminino , Masculino , Camundongos , Ciclo Estral/genética , Hipocampo/metabolismo , Aprendizagem , Plasticidade Neuronal , Transcriptoma
6.
medRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693465

RESUMO

Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-seq datasets using both within-region and pan-regional frameworks. We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-cell data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. Finally, we provide region specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.

7.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36635251

RESUMO

The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Masculino , Feminino , Animais , Locus Cerúleo , Norepinefrina/metabolismo , Doenças Neurodegenerativas/patologia , Neurotoxinas/metabolismo , Neurotoxinas/farmacologia , Sintomas Prodrômicos , Doença de Parkinson/metabolismo
8.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945637

RESUMO

Motor symptoms in Parkinson's disease (PD) are caused by degeneration of dopamine (DA) neurons of the substantia nigra (SN), while early non-motor symptoms such as anxiety and sleep disturbances are likely mediated by dysfunction of locus coeruleus (LC) norepinephrine (NE) neurons. The LC develops α-synuclein pathology prior to SN DA neurons in PD, and later undergoes degeneration, but the mechanisms responsible for its vulnerability are unknown. The SN and LC are the only structures in the brain that produces appreciable amounts of neuromelanin (NM), a dark cytoplasmic pigment. It has been proposed that NM initially plays a protective role by sequestering toxic catecholamine metabolites and heavy metals, but may become harmful during aging and PD as they overwhelm cellular machinery and are released during neurodegeneration. Rodents do not naturally produce NM, limiting the study of causal relationships between NM and PD-associated LC pathology. Adapting a viral-mediated approach for expression of human tyrosinase, the enzyme responsible for peripheral melanin production, we successfully promoted pigmentation in mouse LC neurons that recapitulates key features of endogenous NM found in primates, including eumelanin and pheomelanin, lipid droplets, and a double-membrane encasement. Pigment expression results in mild neurodegeneration, reduced NE levels, transcriptional changes, and novelty-induced anxiety phenotypes as early as 1-week post-injection. By 6-weeks, NM accumulation is associated with severe LC neurodegeneration and a robust neuroinflammatory response. These phenotypes are reminiscent of LC dysfunction in PD, validating this model for studying the consequences of pigment accumulation in the LC as it relates to neurodegenerative disease.

9.
Transl Psychiatry ; 11(1): 403, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294677

RESUMO

Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features-including expression quantitative trait loci (eQTL) and histone marks-from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a component of which is unmasked by retinoids.


Assuntos
Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Biol Psychiatry ; 89(1): 76-89, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32843144

RESUMO

Neuropsychiatric phenotypes have long been known to be influenced by heritable risk factors, directly confirmed by the past decade of genetic studies that have revealed specific genetic variants enriched in disease cohorts. However, the initial hope that a small set of genes would be responsible for a given disorder proved false. The more complex reality is that a given disorder may be influenced by myriad small-effect noncoding variants and/or by rare but severe coding variants, many de novo. Noncoding genomic sequences-for which molecular functions cannot usually be inferred-harbor a large portion of these variants, creating a substantial barrier to understanding higher-order molecular and biological systems of disease. Fortunately, novel genetic technologies-scalable oligonucleotide synthesis, RNA sequencing, and CRISPR (clustered regularly interspaced short palindromic repeats)-have opened novel avenues to experimentally identify biologically significant variants en masse. Massively parallel reporter assays (MPRAs) are an especially versatile technique resulting from such innovations. MPRAs are powerful molecular genetics tools that can be used to screen thousands of untranscribed or untranslated sequences and their variants for functional effects in a single experiment. This approach, though underutilized in psychiatric genetics, has several useful features for the field. We review methods for assaying putatively functional genetic variants and regions, emphasizing MPRAs and the opportunities they hold for dissection of psychiatric polygenicity. We discuss literature applying functional assays in neurogenetics, highlighting strengths, caveats, and design considerations-especially regarding disease-relevant variables (cell type, neurodevelopment, and sex), and we ultimately propose applications of MPRA to both computational and experimental neurogenetics of polygenic disease risk.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genômica , Genoma
11.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33637526

RESUMO

An animal's evolutionary success depends on the ability to seek and consume foods while avoiding environmental threats. However, how evolutionarily conserved threat detection circuits modulate feeding is unknown. In mammals, feeding and threat assessment are strongly influenced by the parabrachial nucleus (PBN), a structure that responds to threats and inhibits feeding. Here, we report that the PBN receives dense inputs from two discrete neuronal populations in the bed nucleus of the stria terminalis (BNST), an extended amygdala structure that encodes affective information. Using a series of complementary approaches, we identify opposing BNST-PBN circuits that modulate neuropeptide-expressing PBN neurons to control feeding and affective states. These previously unrecognized neural circuits thus serve as potential nodes of neural circuitry critical for the integration of threat information with the intrinsic drive to feed.

12.
Cell Rep ; 23(8): 2225-2235, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29791834

RESUMO

Preclinical work has long focused on male animals, though biological sex clearly influences risk for certain diseases, including many psychiatric disorders. Such disorders are often treated by drugs targeting the CNS norepinephrine system. Despite roles for noradrenergic neurons in behavior and neuropsychiatric disease models, their molecular characterization has lagged. We profiled mouse noradrenergic neurons in vivo, defining over 3,000 high-confidence transcripts expressed therein, including druggable receptors. We uncovered remarkable sex differences in gene expression, including elevated expression of the EP3 receptor in females-which we leverage to illustrate the behavioral and pharmacologic relevance of these findings-and of Slc6a15 and Lin28b, both major depressive disorder (MDD)-associated genes. Broadly, we present a means of transcriptionally profiling locus coeruleus under baseline and experimental conditions. Our findings underscore the need for preclinical work to include both sexes and suggest that sex differences in noradrenergic neurons may underlie behavioral differences relevant to disease.


Assuntos
Neurônios Adrenérgicos/metabolismo , Locus Cerúleo/metabolismo , Caracteres Sexuais , Animais , Comportamento Animal , Feminino , Regulação da Expressão Gênica , Lipopolissacarídeos , Masculino , Camundongos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Reprodutibilidade dos Testes , Ribossomos/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa