Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2123134119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858357

RESUMO

Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo-transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.


Assuntos
Via de Sinalização Hippo , Neoplasias Mamárias Experimentais , Lesões Pré-Cancerosas , Neoplasias de Mama Triplo Negativas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Via de Sinalização Hippo/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Experimentais/genética , Camundongos , Lesões Pré-Cancerosas/genética , Receptores de Estrogênio/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Sinalização YAP/genética
2.
Cancer Sci ; 114(5): 2078-2086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36762786

RESUMO

Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.


Assuntos
Neoplasias , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Neoplasias/genética , Neoplasias/metabolismo
3.
Genes Cells ; 27(11): 633-642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054307

RESUMO

Ovarian cancer (OC) is the fifth most common cancer of female cancer death and leading cause of lethal gynecological cancers. High-grade serous ovarian carcinoma (HGSOC) is an aggressive malignancy that is rapidly fatal. Many cases of OC show amplification of the 8q24 chromosomal region, which contains the well-known oncogene MYC. Although MYC amplification is more frequently observed in OCs than in other tumor types, due to the large size of the 8q24 amplicon, the functions of the vast majority of the genes it contains are still unknown. The TIGD5 gene is located at 8q24.3 and encodes a nuclear protein with a DNA-binding motif, but its precise role is obscure. We show here that TIGD5 often co-amplifies with MYC in OCs, and that OC patients with high TIGD5 mRNA expression have a poor prognosis. However, we also found that TIGD5 overexpression in ovarian cancer cell lines unexpectedly suppressed their growth, adhesion, and invasion in vitro, and also reduced tumor growth in xenografted nude mice in vivo. Thus, our work suggests that TIGD5 may in fact operate as a tumor suppressor in OCs rather than as an oncogene.


Assuntos
Proteínas Nucleares , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
4.
Genes Cells ; 27(10): 602-612, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054428

RESUMO

Bladder cancer (BlC) is the fourth most common cancer in males worldwide, but few systemic chemotherapy options for its effective treatment exist. The development of new molecularly-targeted agents against BlC is therefore an urgent issue. The Hippo signaling pathway, with its upstream LATS kinases and downstream transcriptional co-activators YAP1 and TAZ, plays a pivotal role in diverse cell functions, including cell proliferation. Recent studies have shown that overexpression of YAP1 occurs in advanced BlCs and is associated with poor patient prognosis. Accessing data from our previous screening of a chemical library of compounds targeting the Hippo pathway, we identified DMPCA (N-(3,4-dimethoxyphenethyl)-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine) as an agent able to induce the phosphorylation of LATS1 and YAP1/TAZ in BlC cells, thereby suppressing their viability both in vitro and in mouse xenografts. Our data indicate that DMPCA has a potent anti-tumor effect, and raise the possibility that this agent may represent a new and effective therapeutic option for BlC.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminas , Carbazóis , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas de Sinalização YAP
5.
Oral Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38047766

RESUMO

OBJECTIVE: This study aimed to investigate the effect of plasma-activated Ringer's lactate solution (PAL) on oral squamous cell carcinoma (OSCC) cells and carcinogenic processes with a particular focus on iron and collagenous matrix formation. MATERIALS AND METHODS: We used three OSCC cell lines, one keratinocyte cell line, and two fibroblast lines, and cell viability assays, immunoblotting, flow cytometry, and transmission electron microscopy were performed to evaluate the effect and type of cell death. The effect of PAL treatment on lysyl oxidase (LOX) expression was investigated in vitro and in vivo. Tamoxifen-inducible Mob1a/b double-knockout mice were used for the in vivo experiment. RESULTS: PAL killed OSCC cells more effectively than the control nontumorous cells and suppressed cell migration and invasion. Ferroptosis occurred and the protein level of LOX was downregulated in cancer cells in vitro and in vivo. Additionally, PAL improved the survival rate of mice and suppressed collagenous matrix formation. CONCLUSIONS: We demonstrated that PAL specifically kills OSCC cells and that ferroptosis occurs in vitro and in vivo. Furthermore, PAL can prevent carcinogenesis and improve the survival rate of oral cancer, especially tongue cancer, by changing collagenous matrix formation via LOX suppression.

6.
Biochem Biophys Res Commun ; 619: 117-123, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35753219

RESUMO

Radiation therapy is one of the major treatment modalities for patients with cancers. However, ionizing radiation (IR) damages not only cancer cells but also the surrounding vascular endothelial cells (ECs). Hippo pathway effector genes Yap1 and Taz are the two transcriptional coactivators that have crucial roles in tissue homeostasis and vascular integrity in various organs. However, their function in adult ECs at the steady state and after IR is poorly understood. Here, we report sex- and context-dependent roles of endothelial YAP1/TAZ in maintaining vascular integrity and organismal survival. EC-specific Yap1/Taz deletion compromised systemic vascular integrity, resulting in lethal circulation failure preferentially in male mice. Furthermore, EC-specific Yap1/Taz deletion induced acute lethality upon sublethal IR that was closely associated with exacerbated systemic vascular dysfunction and circulation failure. Consistent with these findings, RNA-seq analysis revealed downregulation of tight junction genes in Yap1/Taz-deleted ECs. Collectively, our findings highlight the importance of endothelial YAP1/TAZ for maintaining adult vascular function, which may provide clinical implications for preventing organ injury after radiation therapy.


Assuntos
Neoplasias , Transativadores , Animais , Células Endoteliais/metabolismo , Masculino , Camundongos , Neoplasias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
7.
Genes Cells ; 26(9): 714-726, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34142411

RESUMO

There are currently no treatments for salivary gland diseases, making it vital to understand signaling mechanisms operating in acinar and ductal cells so as to develop regenerative therapies. To date, little work has focused on elucidating the signaling cascades controlling the differentiation of these cell types in adult mammals. To analyze the function of the Hippo-TAZ/YAP1 pathway in adult mouse salivary glands, we generated adMOB1DKO mice in which both MOB1A and MOB1B were TAM-inducibly deleted when the animals were adults. Three weeks after TAM treatment, adMOB1DKO mice exhibited smaller submandibular glands (SMGs) than controls with a decreased number of acinar cells and an increased number of immature dysplastic ductal cells. The mutants suffered from reduced saliva production accompanied by mild inflammatory cell infiltration and fibrosis in SMGs, similar to the Sjogren's syndrome. MOB1-deficient acinar cells showed normal proliferation and apoptosis but decreased differentiation, leading to an increase in acinar/ductal bilineage progenitor cells. These changes were TAZ-dependent but YAP1-independent. Biochemically, MOB1-deficient salivary epithelial cells showed activation of the TAZ/YAP1 and ß-catenin in ductal cells, but reduced SOX2 and SOX10 expression in acinar cells. Thus, Hippo-TAZ signaling is critical for proper ductal and acinar cell differentiation and function in adult mice.


Assuntos
Células Acinares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Proliferação de Células , Glândulas Salivares/metabolismo , Células Acinares/citologia , Células Acinares/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Glândulas Salivares/citologia , beta Catenina/genética , beta Catenina/metabolismo
8.
Cancer Sci ; 112(1): 51-60, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159406

RESUMO

The Hippo-YAP pathway regulates organ size, tissue homeostasis, and tumorigenesis in mammals. In response to cell density, external mechanical pressure, and/or other stimuli, the Hippo core complex controls the translocation of YAP1/TAZ proteins to the nucleus and thereby regulates cell growth. Abnormal upregulation or nuclear localization of YAP1/TAZ occurs in many human malignancies and promotes their formation, progression, and metastasis. A key example is squamous cell carcinoma (SCC) genesis. Many risk factors and crucial signals associated with SCC development in various tissues accelerate YAP1/TAZ accumulation, and mice possessing constitutively activated YAP1/TAZ show immediate carcinoma in situ (CIS) formation in these tissues. Because CIS onset is so rapid in these mutants, we propose that many SCCs initiate and progress when YAP1 activity is sustained and exceeds a certain oncogenic threshold. In this review, we summarize the latest findings on the roles of YAP1/TAZ in several types of SCCs. We also discuss whether targeting aberrant YAP1/TAZ activation might be a promising strategy for SCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células/fisiologia , Humanos
9.
Cancer Sci ; 112(10): 4303-4316, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289205

RESUMO

Yes-associated protein 1 (YAP1) and its paralogue PDZ-binding motif (TAZ) play pivotal roles in cell proliferation, migration, and invasion, and abnormal activation of these TEAD transcriptional coactivators is found in diverse cancers in humans and mice. Targeting YAP1/TAZ signaling is thus a promising therapeutic avenue but, to date, few selective YAP1/TAZ inhibitors have been effective against cancer cells either in vitro or in vivo. We screened chemical libraries for potent YAP1/TAZ inhibitors using a highly sensitive luciferase reporter system to monitor YAP1/TAZ-TEAD transcriptional activity in cells. Among 29 049 low-molecular-weight compounds screened, we obtained nine hits, and the four of these that were the most effective shared a core structure with the natural product alantolactone (ALT). We also tested 16 other structural derivatives of ALT and found that natural ALT was the most efficient at increasing ROS-induced LATS kinase activities and thus YAP1/TAZ phosphorylation. Phosphorylated YAP1/TAZ proteins were subject to nuclear exclusion and proteosomic degradation such that the growth of ALT-treated tumor cells was inhibited both in vitro and in vivo. Our data show for the first time that ALT can be used to target the ROS-YAP pathway driving tumor cell growth and so could be a potent anticancer drug.


Assuntos
Aciltransferases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Lactonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Auranofina/farmacologia , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Feminino , Inula/química , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição de Domínio TEA , Neoplasias da Língua/induzido quimicamente , Neoplasias da Língua/prevenção & controle , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Sinalização YAP
10.
Development ; 145(6)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29511023

RESUMO

Hippo signaling is modulated in response to cell density, external mechanical forces, and rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and influence Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown. Cartilage is rich in ECM and also subject to strong external forces - two upstream factors regulating Hippo signaling. Chondrogenesis and endochondral ossification are tightly controlled by growth factors, morphogens, hormones, and transcriptional factors that engage in crosstalk with Hippo-YAP1/TAZ signaling. Here, we generated tamoxifen-inducible, chondrocyte-specific Mob1a/b-deficient mice and show that hyperactivation of endogenous YAP1/TAZ impairs chondrocyte proliferation and differentiation/maturation, leading to chondrodysplasia. These defects were linked to suppression of SOX9, a master regulator of chondrogenesis, the expression of which is mediated by TEAD transcription factors. Our data indicate that a MOB1-dependent YAP1/TAZ-TEAD complex functions as a transcriptional repressor of SOX9 and thereby negatively regulates chondrogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osteocondrodisplasias/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos/metabolismo , Condrogênese/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Osteocondrodisplasias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Transativadores , Proteínas de Sinalização YAP
11.
J Electrocardiol ; 67: 119-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34174541

RESUMO

OBJECTIVE: The JT interval of the myocardial repolarization time can be divided into Jpoint to T-peak interval (JTp) and T-peak to T-end interval (Tpe). It is well known that the JT interval is dependent on the heart rate, but little is known regarding heart rate dependence for JTp and Tpe. The aim of the present study was to clarify the heart rate dependence of JTp and Tpe and to elucidate the interference of autonomic nervous activity with these parameters. METHODS: We evaluated 50 prepubertal children (mean age: 6.4 ± 0.5 years; male:female, 22:28) without heart disease. JTp, Tpe, and the preceding RR intervals were measured using 120 consecutive beats (lead CM5). First, the relationships between the RR interval and JTp and Tpe were evaluated by Pearson's correlation coefficient. Second, to evaluate autonomic interference with JTp and Tpe, the degree of coherence between RR interval variability and JTp or Tpe variability was calculated using spectral analysis. RESULTS: Significant positive correlations were observed between the RR interval and JTp (y = 0.116x + 105.5; r = 0.594, p < 0.001) and between the RR interval and Tpe (y = 0.037x + 44.7; r = 0.432, p < 0.001). Tpe variability had a lower degree of coherence with RR interval variability (range: 0.039-0.5 Hz) than with JTp variability (0.401 [interquartile range, 0.352-0.460] vs. 0.593 [0.503-0.664], respectively; p < 0.001). CONCLUSIONS: Tpe had lower heart rate dependence and a lower degree of autonomic nervous interference than did JTp.


Assuntos
Sistema Nervoso Autônomo , Eletrocardiografia , Vias Autônomas , Criança , Pré-Escolar , Feminino , Frequência Cardíaca , Humanos , Masculino , Miocárdio
12.
Cancer Sci ; 111(10): 3576-3587, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32716083

RESUMO

Cervical cancer (CC) is usually initiated by infection with high-risk types of human papillomavirus (HPV). The HPV E6 and E7 proteins target p53 and RB, respectively, but other cellular targets likely exist. We generated uterus-specific MOB1A/B double KO (uMob1DKO) mice, which immediately developed cervical squamous cell carcinoma in situ. Mutant cervical epithelial cells showed YAP1-dependent hyperproliferation, altered self-renewal, impaired contact inhibition, and chromosomal instability. p53 activation was increased in uMob1DKO cells, and additional p53 loss in uMob1DKO mice accelerated tumor invasion. In human CC, strong YAP1 activation was observed from the precancerous stage. Human cells overexpressing HPV16 E6/E7 showed inactivation of not only p53 and RB but also PTPN14, boosting YAP1 activation. Estrogen, cigarette smoke condensate, and PI3K hyperactivation all increased YAP1 activity in human cervical epithelial cells, and PTPN14 depletion along with PI3K activation or estrogen treatment further enhanced YAP1. Thus, immediate CC onset may initiate when YAP1 activity exceeds an oncogenic threshold, making Hippo-YAP1 signaling a major CC driver.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cárie Radicular/metabolismo , Animais , Carcinoma/virologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Estrogênios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidade , Proteínas E7 de Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Repressoras/metabolismo , Cárie Radicular/virologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
13.
Genes Cells ; 24(7): 485-495, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31125466

RESUMO

Mammalian STE20-like protein kinase 1/2 (MST1/2) and nuclear Dbf2-related kinase 1/2 (NDR1/2) are core components of Hippo signaling that are also known to be important regulators of lymphocyte trafficking. However, little is understood about the roles of other Hippo pathway molecules in these cells. Here, we present the first analysis of the function of Mps one binder kinase activator-1 (MOB1) in T lymphocytes in vivo. T-cell-specific double knockout (DKO) of MOB1A/B in mice [tMob1 DKO mice] reduces the number of naïve T cells in both the circulation and secondary lymphoid organs, but leads to an accumulation of CD4+ CD8- and CD4- CD8+ single-positive (SP) cells in the thymus. In vitro, naïve MOB1A/B-deficient T cells show increased apoptosis and display impaired trafficking capacity in response to the chemokine CCL19. These defects are linked to suppression of the activation of MST and NDR kinases, but are independent of the downstream transcriptional co-activator Yes-associated protein 1 (YAP1). Thus, MOB1 proteins play an important role in thymic egress and T-cell survival that is mediated by a pathway other than conventional Hippo-YAP1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Proteínas Quinases/fisiologia , Linfócitos T/imunologia , Timócitos/imunologia , Animais , Apoptose , Proteínas de Ciclo Celular , Células Cultivadas , Quimiotaxia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismo , Linfócitos T/patologia , Timócitos/metabolismo , Timócitos/patologia , Proteínas de Sinalização YAP
14.
FASEB J ; 33(4): 5548-5560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640535

RESUMO

Cell competition is involved in mammalian embryogenesis and tumor elimination and progression. It was previously shown that, whereas NIH3T3 mouse fibroblasts expressing high levels of the yes-associated protein 1(YAP1) target TEA domain family (TEAD) transcription factors become "winners" in cell competitions, Madin-Darby canine kidney cells expressing activated YAP1 become "losers" and are eliminated from culture monolayers. Thus, YAP1's role in cell competitions is clearly context dependent. Here, we show that keratinocytes overexpressing a constitutively activated YAP1 mutant lose in in vitro competitions with control cells conducted in standard tissue culture dishes and undergo apical extrusion. Similarly, cells in which endogenous YAP1 is activated by NF2 knockdown become losers. The YAP1-overexpressing cells exhibit a decrease in cell-matrix adhesion because of defective expression of adhesion molecules such as fibronectin-1. Cell adhesion-mediated proliferation is also impaired. However, because of intrinsic factors, YAP1-expressing cells proliferate faster than control cells when cocultured in dishes impeding cell adhesion. In vivo, Mob1a/b-deficient (YAP1-activated) epidermis, which shows decreased expression of type XVII collagen, cannot be engrafted successfully onto donor mice. YAP1-activated skin grafts shrink away from surrounding control skin, and the epidermis peels off the basement membrane. Our data show that YAP1 activation controls cell competition in part by decreasing cell adhesion.-Nishio, M., Miyachi, Y., Otani, J., Tane, S., Omori, H., Ueda, F., Togashi, H., Sasaki, T., Mak, T. W., Nakao, K., Fujita, Y., Nishina, H., Maehama, T., Suzuki, A. Hippo pathway controls cell adhesion and context-dependent cell competition to influence skin engraftment efficiency.


Assuntos
Adesão Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Animais , Proliferação de Células/fisiologia , Cães , Desenvolvimento Embrionário/fisiologia , Fibronectinas/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Fatores de Transcrição/metabolismo
15.
Pediatr Cardiol ; 41(7): 1432-1437, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32572546

RESUMO

The QT variability index (QTVI), which measures the instability of myocardial repolarization, is usually calculated from a single electrocardiogram (ECG) recording and can be easily applied in children. It is well known that frequency analysis of heart rate variability (HRV) can detect autonomic balance, but it is not clear whether QTVI is correlated with autonomic tone. Therefore, we evaluated the association between QTVI and HRV to elucidate whether QTVI is correlated with autonomic nerve activity. Apparently, healthy 320 children aged 0-7 years who visited Fujita Health University Hospital for heart checkup examinations were included. The RR and QT intervals of 60 continuous heart beats were measured, and the QTVI was calculated using the formula of Berger et al. Frequency analysis of HRV, including the QTVI analysis region, was conducted for 2 min and the ratio of low-frequency (LF) components to high-frequency (HF) components (LF/HF) and HF/(LF + HF) ratio was calculated as indicators of autonomic nerve activity. Then, the correlations between QTVI and these parameters were assessed. QTVI showed a significant positive correlation with LF/HF ratio (r = 0.45, p < 0.001) and negative correlation with HF/(LF + HF) ratio (r = -0.429, p < 0.001). These correlations remained after adjustment for sex and age. QTVI, which is calculated from non-invasive ECG and can detect abnormal myocardial repolarization, is significantly correlated with frequency analysis of HRV parameters. QTVI reflects autonomic nerve balance in children.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Técnicas Eletrofisiológicas Cardíacas/métodos , Frequência Cardíaca/fisiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Técnicas de Diagnóstico Neurológico , Eletrocardiografia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
16.
Proc Natl Acad Sci U S A ; 113(1): E71-80, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699479

RESUMO

Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial-mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-ß)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-ß pathway may be effective treatment for cHC-CCs and ICCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/metabolismo , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Aciltransferases , Animais , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Transição Epitelial-Mesenquimal , Genes Supressores de Tumor , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Nus , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
17.
Genes Cells ; 22(1): 6-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28078823

RESUMO

The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Animais , Polaridade Celular/genética , Matriz Extracelular/genética , Via de Sinalização Hippo , Humanos , Camundongos , Mutação/genética , Transdução de Sinais/genética , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
18.
Proc Natl Acad Sci U S A ; 112(31): E4264-71, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195794

RESUMO

Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Colite/enzimologia , Colite/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Animais , Contagem de Células , Quimiocinas/genética , Quimiocinas/metabolismo , Colite/patologia , Colo/patologia , Feminino , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Células HEK293 , Humanos , Interleucina-10/deficiência , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/deficiência , Quinase Syk , Domínios de Homologia de src , Quinases da Família src/metabolismo
19.
Oncology ; 93(1): 67-74, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448997

RESUMO

OBJECTIVE: MOB1, a core component of the Hippo signaling pathway, suppresses cell proliferation, and MOB1 liver conditional knockout mice develop intrahepatic cholangiocarcinoma (ICC). However, its clinical significance in human ICC has not been established. The aim of this study was to characterize protein levels and the role of Hippo and TGF pathways in ICCs. METHODS: The protein levels of yes-associated protein 1 (YAP1), MOB1, Smad2, and TGFß2 in 88 ICC cases were analyzed. Protein level was graded by a scoring system; then, the clinicopathological factors, including prognosis, were analyzed based on protein level. RESULTS: Nuclear overexpression of YAP1 was seen in 28 cases (31.8%), and it was significantly associated with a poor overall survival rate (p = 0.01). MOB1 expression decreased in 42 cases (47.7%) and was associated with a poor overall survival rate (p = 0.02). SMAD2 nuclear localization was significantly correlated with a high YAP1 level independent of TGFß2. Multivariate analysis revealed that a high YAP1 level, a low MOB1 level, and lymphatic permeation were independent risk factors for overall survival. CONCLUSIONS: These results showed that key components of the Hippo signaling pathway are aberrantly expressed and associated with the malignant potential of human ICC.


Assuntos
Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Feminino , Via de Sinalização Hippo , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade
20.
Artigo em Inglês | MEDLINE | ID: mdl-28211121

RESUMO

BACKGROUND: The QT variability index (QTVI) is a noninvasive index of repolarization lability that has been applied to subjects with cardiovascular disease. QTVI provides a ratio of normalized QT variability to normalized heart rate variability, and therefore includes an assessment of autonomic nervous activity. However, measurement of QT time is particularly difficult in children, who exhibit physiologically high heart rates compared with adults. In this study, we developed a set of standard values of J-point to Tpeak interval (JTp) for infants by age, and assessed the correlation of QTVI with the JTp variability index (JTpVI). METHODS: Subjects included 623 infants and children (0-7 years of age) without heart disease and 57 healthy university students. All subjects were divided into three groups by age. QTVI and JTpVI were calculated based on an electrocardiogram, and age-specific standard values, a gender-specific classification, and a standard growth curve were constructed. RESULTS: JTpVI markedly decreased in infancy and slowly decreased thereafter, reaching adult values by school age. There was also a strong correlation of JTpVI with QTVI (r = .856). CONCLUSIONS: JTp can be used to evaluate the variability of the repolarization time in healthy infants, and may be useful for detection of early repolarization abnormalities.


Assuntos
Eletrocardiografia/métodos , Eletrocardiografia/estatística & dados numéricos , Frequência Cardíaca/fisiologia , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa