Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
2.
Nature ; 594(7861): 117-123, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012113

RESUMO

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Assuntos
Biossíntese de Proteínas/genética , Proteostase/genética , RNA Antissenso/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Idoso , Animais , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Diferenciação Celular , Progressão da Doença , Feminino , Humanos , Sítios Internos de Entrada Ribossomal/genética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Ribossomos/metabolismo , Proteínas tau/biossíntese
3.
Mol Cell ; 70(4): 588-601.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754822

RESUMO

Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.


Assuntos
Proteína Huntingtina/química , Doença de Huntington/patologia , Peptídeos/química , Transição de Fase , Agregação Patológica de Proteínas/patologia , Éxons , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Saccharomyces cerevisiae
4.
Genome Res ; 32(1): 71-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34963663

RESUMO

Astrocytes contribute to motor neuron death in amyotrophic lateral sclerosis (ALS), but whether they adopt deleterious features consistent with inflammatory reactive states remains incompletely resolved. To identify inflammatory reactive features in ALS human induced pluripotent stem cell (hiPSC)-derived astrocytes, we examined transcriptomics, proteomics, and glutamate uptake in VCP-mutant astrocytes. We complemented this by examining other ALS mutations and models using a systematic meta-analysis of all publicly-available ALS astrocyte sequencing data, which included hiPSC-derived astrocytes carrying SOD1, C9orf72, and FUS gene mutations as well as mouse ALS astrocyte models with SOD1G93A mutation, Tardbp deletion, and Tmem259 (also known as membralin) deletion. ALS astrocytes were characterized by up-regulation of genes involved in the extracellular matrix, endoplasmic reticulum stress, and the immune response and down-regulation of synaptic integrity, glutamate uptake, and other neuronal support processes. We identify activation of the TGFB, Wnt, and hypoxia signaling pathways in both hiPSC and mouse ALS astrocytes. ALS changes positively correlate with TNF, IL1A, and complement pathway component C1q-treated inflammatory reactive astrocytes, with significant overlap of differentially expressed genes. By contrasting ALS changes with models of protective reactive astrocytes, including middle cerebral artery occlusion and spinal cord injury, we uncover a cluster of genes changing in opposing directions, which may represent down-regulated homeostatic genes and up-regulated deleterious genes in ALS astrocytes. These observations indicate that ALS astrocytes augment inflammatory processes while concomitantly suppressing neuronal supporting mechanisms, thus resembling inflammatory reactive states and offering potential therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação
5.
Genome Res ; 32(10): 1808-1825, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180233

RESUMO

Intron retention (IR) is now recognized as a dominant splicing event during motor neuron (MN) development; however, the role and regulation of intron-retaining transcripts (IRTs) localized to the cytoplasm remain particularly understudied. Here we show that IR is a physiological process that is spatiotemporally regulated during MN lineage restriction and that IRTs in the cytoplasm are detected in as many as 13% (n = 2297) of the genes expressed during this process. We identify a major class of cytoplasmic IRTs that are not associated with reduced expression of their own genes but instead show a high capacity for RNA-binding protein and miRNA occupancy. Finally, we show that ALS-causing VCP mutations lead to a selective increase in cytoplasmic abundance of this particular class of IRTs, which in turn temporally coincides with an increase in the nuclear expression level of predicted miRNA target genes. Altogether, our study identifies a previously unrecognized class of cytoplasmic intronic sequences with potential regulatory function beyond gene expression.


Assuntos
MicroRNAs , Neurônios Motores , Humanos , Íntrons , Citoplasma/genética , Citoplasma/metabolismo , Neurogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Brain ; 147(3): 970-979, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882537

RESUMO

Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Proteína com Valosina , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Lisossomos , Proteína com Valosina/genética
7.
Brain ; 147(7): 2325-2333, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527856

RESUMO

APP gene dosage is strongly associated with Alzheimer's disease (AD) pathogenesis. Genomic duplication of the APP locus leads to autosomal dominant early-onset AD. Individuals with Down syndrome (trisomy of chromosome 21) harbour three copies of the APP gene and invariably develop progressive AD with highly characteristic neuropathological features. Restoring expression of APP to the equivalent of that of two gene copies, or lower, is a rational therapeutic strategy, as it would restore physiological levels of neuronal APP protein without the potentially deleterious consequences of inadvertently inducing loss of APP function. Here we find that antisense oligonucleotides (ASOs) targeting APP are an effective approach to reduce APP protein levels and rescue endolysosome and autophagy dysfunction in APP duplication and Trisomy 21 human induced pluripotent stem cell (hiPSC)-derived cortical neurons. Importantly, using ultrasensitive single-aggregate imaging techniques, we show that APP targeting ASOs significantly reduce both intracellular and extracellular amyloid-ß-containing aggregates. Our results highlight the potential of APP ASOs as a therapeutic approach for forms of AD caused by duplication of the APP gene, including monogenic AD and AD related to Down syndrome.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Lisossomos , Oligonucleotídeos Antissenso , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Células Cultivadas
8.
Nucleic Acids Res ; 51(16): 8774-8786, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377445

RESUMO

m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.


Assuntos
Proteínas Aviárias , Proteínas de Ligação a RNA , Adenosina/metabolismo , Proteínas Aviárias/metabolismo , Metilação , Processamento de Proteína Pós-Traducional , Proteínas/genética , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Galinhas
9.
Med Res Rev ; 43(4): 829-854, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36786126

RESUMO

Despite the devastating clinical outcome of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), its etiology remains mysterious. Approximately 90% of ALS is characterized as sporadic, signifying that the patient has no family history of the disease. The development of an impactful disease modifying therapy across the ALS spectrum has remained out of grasp, largely due to the poorly understood mechanisms of disease onset and progression. Currently, ALS is invariably fatal and rapidly progressive. It is hypothesized that multiple factors can lead to the development of ALS, however, treatments are often focused on targeting specific familial forms of the disease (10% of total cases). There is a strong need to develop disease modifying treatments for ALS that can be effective across the full ALS spectrum of familial and sporadic cases. Although the onset of disease varies significantly between patients, there are general disease mechanisms and progressions that can be seen broadly across ALS patients. Therefore, this review explores the targeting of these widespread disease mechanisms as possible areas for therapeutic intervention to treat ALS broadly. In particular, this review will focus on targeting mechanisms of defective protein homeostasis and RNA processing, which are both increasingly recognized as design principles of ALS pathogenesis. Additionally, this review will explore the benefits of gene therapy as an approach to treating ALS, specifically focusing on the use of adeno-associated virus (AAV) as a vector for gene delivery to the CNS and recent advances in the field.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Terapia Genética , Dependovirus/genética
10.
EMBO Rep ; 22(1): e50640, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226175

RESUMO

Novel functional coding sequences (altORFs) are camouflaged within annotated ones (CDS) in a different reading frame. We show here that an altORF is nested in the FUS CDS, encoding a conserved 170 amino acid protein, altFUS. AltFUS is endogenously expressed in human tissues, notably in the motor cortex and motor neurons. Over-expression of wild-type FUS and/or amyotrophic lateral sclerosis-linked FUS mutants is known to trigger toxic mechanisms in different models. These include inhibition of autophagy, loss of mitochondrial potential and accumulation of cytoplasmic aggregates. We find that altFUS, not FUS, is responsible for the inhibition of autophagy, and pivotal in mitochondrial potential loss and accumulation of cytoplasmic aggregates. Suppression of altFUS expression in a Drosophila model of FUS-related toxicity protects against neurodegeneration. Some mutations found in ALS patients are overlooked because of their synonymous effect on the FUS protein. Yet, we show they exert a deleterious effect causing missense mutations in the overlapping altFUS protein. These findings demonstrate that FUS is a bicistronic gene and suggests that both proteins, FUS and altFUS, cooperate in toxic mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Proteína FUS de Ligação a RNA , Esclerose Lateral Amiotrófica/genética , Animais , Drosophila/genética , Humanos , Neurônios Motores , Mutação , Proteína FUS de Ligação a RNA/genética
11.
Brain ; 145(1): 17-26, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35265969

RESUMO

Accumulating evidence suggests that neurodegenerative diseases are not merely neuronal in nature but comprise multicellular involvement, with astrocytes emerging as key players. The pathomechanisms of several neurodegenerative diseases involve the deposition of misfolded protein aggregates in neurons that have characteristic prion-like behaviours such as template-directed seeding, intercellular propagation, distinct conformational strains and protein-mediated toxicity. The role of astrocytes in dealing with these pathological prion-like protein aggregates and whether their responses either protect from or conspire with the disease process is currently unclear. Here we review the existing literature implicating astrocytes in multiple neurodegenerative proteinopathies with a focus on prion-like behaviour in this context.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Príons , Astrócitos/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Doenças Priônicas/patologia , Príons/metabolismo , Agregados Proteicos , Dobramento de Proteína
12.
Brain ; 145(2): 481-489, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042241

RESUMO

Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
13.
Nucleic Acids Res ; 49(6): 3168-3184, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684213

RESUMO

Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.


Assuntos
Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Astrócitos/metabolismo , Íntrons , Animais , Astrócitos/efeitos dos fármacos , Canais de Cálcio/genética , Núcleo Celular/genética , Células Cultivadas , Citocinas/farmacologia , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Expressão Gênica , Humanos , Camundongos , Mutação , Superóxido Dismutase-1/genética , Translocação Genética , Proteína com Valosina/genética
14.
J Cell Mol Med ; 26(4): 1327-1331, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34951131

RESUMO

The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies.


Assuntos
Degeneração Lobar Frontotemporal , Tauopatias , Proteínas tau , Astrócitos/metabolismo , Humanos , Mutação/genética , Isoformas de Proteínas/genética , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Neuropathol Appl Neurobiol ; 48(2): e12770, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34595747

RESUMO

AIMS: Although morphological attributes of cells and their substructures are recognised readouts of physiological or pathophysiological states, these have been relatively understudied in amyotrophic lateral sclerosis (ALS) research. METHODS: In this study, we integrate multichannel fluorescence high-content microscopy data with deep learning imaging methods to reveal-directly from unsegmented images-novel neurite-associated morphological perturbations associated with (ALS-causing) VCP-mutant human motor neurons (MNs). RESULTS: Surprisingly, we reveal that previously unrecognised disease-relevant information is withheld in broadly used and often considered 'generic' biological markers of nuclei (DAPI) and neurons ( ß III-tubulin). Additionally, we identify changes within the information content of ALS-related RNA binding protein (RBP) immunofluorescence imaging that is captured in VCP-mutant MN cultures. Furthermore, by analysing MN cultures exposed to different extrinsic stressors, we show that heat stress recapitulates key aspects of ALS. CONCLUSIONS: Our study therefore reveals disease-relevant information contained in a range of both generic and more specific fluorescent markers and establishes the use of image-based deep learning methods for rapid, automated and unbiased identification of biological hypotheses.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Aprendizado Profundo , Neurônios Motores/metabolismo , Neuritos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenótipo
16.
Brain ; 144(7): 1985-1993, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33693641

RESUMO

We recently described aberrantly increased cytoplasmic SFPQ intron-retaining transcripts (IRTs) and concurrent SFPQ protein mislocalization as new hallmarks of amyotrophic lateral sclerosis (ALS). However, the generalizability and potential roles of cytoplasmic IRTs in health and disease remain unclear. Here, using time-resolved deep sequencing of nuclear and cytoplasmic fractions of human induced pluripotent stem cells undergoing motor neurogenesis, we reveal that ALS-causing VCP gene mutations lead to compartment-specific aberrant accumulation of IRTs. Specifically, we identify >100 IRTs with increased cytoplasmic abundance in ALS samples. Furthermore, these aberrant cytoplasmic IRTs possess sequence-specific attributes and differential predicted binding affinity to RNA binding proteins. Remarkably, TDP-43, SFPQ and FUS-RNA binding proteins known for nuclear-to-cytoplasmic mislocalization in ALS-abundantly and specifically bind to this aberrant cytoplasmic pool of IRTs. Our data are therefore consistent with a novel role for cytoplasmic IRTs in regulating compartment-specific protein abundance. This study provides new molecular insight into potential pathomechanisms underlying ALS and highlights aberrant cytoplasmic IRTs as potential therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica , Citoplasma/metabolismo , Íntrons , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Humanos , Mutação , Proteína com Valosina/genética
17.
Glia ; 69(1): 20-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749770

RESUMO

Increasing evidence has suggested that astrocytes demonstrate striking regionally allocated functional heterogeneity. Here, we discuss how this spatiotemporally encoded diversity determines the astrocytic phenotype along a finely grained spectrum from neuroprotective to deleterious states. With increasing recognition of their diverse and evolving roles in the central neuraxis, astrocytes now represent a tractable cellular target for therapies aiming to restore neural circuit integrity in a broad range of neurodegenerative disorders. Understanding the determinants of astrocyte physiology along with the true extent of heterogeneity in their regional and subregional functions will ultimately inform therapeutic strategy in neurodegenerative diseases.


Assuntos
Astrócitos , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Fenótipo
18.
Brain ; 143(12): 3526-3539, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427296

RESUMO

Microglia are the primary immune cells of the CNS, carrying out key homeostatic roles and undergoing context-dependent and temporally regulated changes in response to injury and neurodegenerative diseases. Microglia have been implicated in playing a role in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by extensive motor neuron loss leading to paralysis and premature death. However, as the pathomechansims of ALS are increasingly recognized to involve a multitude of different cell types, it has been difficult to delineate the specific contribution of microglia to disease. Here, we review the literature of microglial involvement in ALS and discuss the evidence for the neurotoxic and neuroprotective pathways that have been attributed to microglia in this disease. We also discuss accumulating evidence for spatiotemporal regulation of microglial activation in this context. A deeper understanding of the role of microglia in the 'cellular phase' of ALS is crucial in the development of mechanistically rationalized therapies.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Microglia/patologia , Humanos
19.
Brain ; 143(4): 1057-1072, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851317

RESUMO

With an ageing population comes an inevitable increase in the prevalence of age-associated neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), a relentlessly progressive and universally fatal disease characterized by the degeneration of upper and lower motor neurons within the brain and spinal cord. Indeed, the physiological process of ageing causes a variety of molecular and cellular phenotypes. With dysfunction at the neuromuscular junction implicated as a key pathological mechanism in ALS, and each lower motor unit cell type vulnerable to its own set of age-related phenotypes, the effects of ageing might in fact prove a prerequisite to ALS, rendering the cells susceptible to disease-specific mechanisms. Moreover, we discuss evidence for overlap between age and ALS-associated hallmarks, potentially implicating cell type-specific ageing as a key contributor to this multifactorial and complex disease. With a dearth of disease-modifying therapy currently available for ALS patients and a substantial failure in bench to bedside translation of other potential therapies, the unification of research in ageing and ALS requires high fidelity models to better recapitulate age-related human disease and will ultimately yield more reliable candidate therapeutics for patients, with the aim of enhancing healthspan and life expectancy.


Assuntos
Envelhecimento/patologia , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Senescência Celular/fisiologia , Humanos
20.
Brain ; 143(2): 430-440, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040555

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by motor neuron loss, resulting in muscle wasting, paralysis and eventual death. A key pathological feature of ALS is cytoplasmically mislocalized and aggregated TDP-43 protein in >95% of cases, which is considered to have prion-like properties. Historical studies have predominantly focused on genetic forms of ALS, which represent ∼10% of cases, leaving the remaining 90% of sporadic ALS relatively understudied. Additionally, the role of astrocytes in ALS and their relationship with TDP-43 pathology is also not currently well understood. We have therefore used highly enriched human induced pluripotent stem cell (iPSC)-derived motor neurons and astrocytes to model early cell type-specific features of sporadic ALS. We first demonstrate seeded aggregation of TDP-43 by exposing human iPSC-derived motor neurons to serially passaged sporadic ALS post-mortem tissue (spALS) extracts. Next, we show that human iPSC-derived motor neurons are more vulnerable to TDP-43 aggregation and toxicity compared with their astrocyte counterparts. We demonstrate that these TDP-43 aggregates can more readily propagate from motor neurons into astrocytes in co-culture paradigms. We next found that astrocytes are neuroprotective to seeded aggregation within motor neurons by reducing (mislocalized) cytoplasmic TDP-43, TDP-43 aggregation and cell toxicity. Furthermore, we detected TDP-43 oligomers in these spALS spinal cord extracts, and as such demonstrated that highly purified recombinant TDP-43 oligomers can reproduce this observed cell-type specific toxicity, providing further support to a protein oligomer-mediated toxicity hypothesis in ALS. In summary, we have developed a human, clinically relevant, and cell-type specific modelling platform that recapitulates key aspects of sporadic ALS and uncovers both an initial neuroprotective role for astrocytes and the cell type-specific toxic effect of TDP-43 oligomers.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Morte Celular/genética , Citoplasma/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa