RESUMO
We present an early version of a Susceptible-Exposed-Infected-Recovered-Deceased (SEIRD) mathematical model based on partial differential equations coupled with a heterogeneous diffusion model. The model describes the spatio-temporal spread of the COVID-19 pandemic, and aims to capture dynamics also based on human habits and geographical features. To test the model, we compare the outputs generated by a finite-element solver with measured data over the Italian region of Lombardy, which has been heavily impacted by this crisis between February and April 2020. Our results show a strong qualitative agreement between the simulated forecast of the spatio-temporal COVID-19 spread in Lombardy and epidemiological data collected at the municipality level. Additional simulations exploring alternative scenarios for the relaxation of lockdown restrictions suggest that reopening strategies should account for local population densities and the specific dynamics of the contagion. Thus, we argue that data-driven simulations of our model could ultimately inform health authorities to design effective pandemic-arresting measures and anticipate the geographical allocation of crucial medical resources.
RESUMO
The outbreak of COVID-19 in 2020 has led to a surge in interest in the research of the mathematical modeling of epidemics. Many of the introduced models are so-called compartmental models, in which the total quantities characterizing a certain system may be decomposed into two (or more) species that are distributed into two (or more) homogeneous units called compartments. We propose herein a formulation of compartmental models based on partial differential equations (PDEs) based on concepts familiar to continuum mechanics, interpreting such models in terms of fundamental equations of balance and compatibility, joined by a constitutive relation. We believe that such an interpretation may be useful to aid understanding and interdisciplinary collaboration. We then proceed to focus on a compartmental PDE model of COVID-19 within the newly-introduced framework, beginning with a detailed derivation and explanation. We then analyze the model mathematically, presenting several results concerning its stability and sensitivity to different parameters. We conclude with a series of numerical simulations to support our findings.