Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Stroke ; 54(7): 1875-1887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37226775

RESUMO

BACKGROUND: Respiratory and urinary tract infections are frequent complications in patients with severe stroke. Stroke-associated infection is mainly due to opportunistic commensal bacteria of the microbiota that may translocate from the gut. We investigated the mechanisms underlying gut dysbiosis and poststroke infection. METHODS: Using a model of transient cerebral ischemia in mice, we explored the relationship between immunometabolic dysregulation, gut barrier dysfunction, gut microbial alterations, and bacterial colonization of organs, and we explored the effect of several drug treatments. RESULTS: Stroke-induced lymphocytopenia and widespread colonization of lung and other organs by opportunistic commensal bacteria. This effect correlated with reduced gut epithelial barrier resistance, and a proinflammatory sway in the gut illustrated by complement and nuclear factor-κB activation, reduced number of gut regulatory T cells, and a shift of gut lymphocytes to γδT cells and T helper 1/T helper 17 phenotypes. Stroke increased conjugated bile acids in the liver but decreased bile acids and short-chain fatty acids in the gut. Gut fermenting anaerobic bacteria decreased while opportunistic facultative anaerobes, notably Enterobacteriaceae, suffered an expansion. Anti-inflammatory treatment with a nuclear factor-κB inhibitor fully abrogated the Enterobacteriaceae overgrowth in the gut microbiota induced by stroke, whereas inhibitors of the neural or humoral arms of the stress response were ineffective at the doses used in this study. Conversely, the anti-inflammatory treatment did not prevent poststroke lung colonization by Enterobacteriaceae. CONCLUSIONS: Stroke perturbs homeostatic neuro-immuno-metabolic networks facilitating a bloom of opportunistic commensals in the gut microbiota. However, this bacterial expansion in the gut does not mediate poststroke infection.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Acidente Vascular Cerebral , Camundongos , Animais , NF-kappa B , Bactérias/genética , Acidente Vascular Cerebral/complicações , Pulmão
2.
Mar Drugs ; 19(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34677454

RESUMO

Omega-3 polyunsaturated fatty acids are associated with a lower risk of cardiometabolic diseases. However, docosahexaenoic acid (DHA) is easily oxidized, leading to cellular damage. The present study examined the effects of an increased concentration of DHA in fish oil (80% of total fatty acids) on cardiometabolic risk factors and oxidative stress compared to coconut oil, soybean oil, and fish oil containing eicosapentaenoic acid (EPA) and DHA in a balanced ratio. Forty healthy male Sprague-Dawley rats were supplemented with corresponding oil for 10 weeks. Supplementation with the fish oil containing 80% DHA decreased plasma fat, plasma total cholesterol and muscle fat compared to the coconut oil and the soybean oil. Increasing concentrations of DHA induced incorporation of DHA and EPA in cell membranes and tissues along with a decrease in ω-6 arachidonic acid. The increase in DHA promoted lipid peroxidation, protein carbonylation and antioxidant response. Taken together, the increased concentration of DHA in fish oil reduced fat accumulation compared to the coconut oil and the soybean oil. This benefit was accompanied by high lipid peroxidation and subsequent protein carbonylation in plasma and in liver. In our healthy framework, the slightly higher carbonylation found after receiving fish oil containing 80% DHA might be a protecting mechanism, which fit with the general improvement of antioxidant defense observed in those rats.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Óleos de Peixe/farmacologia , Administração Oral , Animais , Organismos Aquáticos , Fatores de Risco Cardiometabólico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Óleos de Peixe/administração & dosagem , Masculino , Modelos Animais , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Mar Drugs ; 18(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560216

RESUMO

Diacylglycerols (DAG) and ceramides have been suggested as early predictors of insulin resistance. This study was aimed to examine the combined effects of fish oil (FO) and grape seed extract (GSE) on hepatic endogenous antioxidants, DAG and ceramides in diet-induced early stages of insulin resistance. Thirty-five rats were fed one of the following diets: (1) a standard diet (STD group), (2) a high-fat high-sucrose diet (HFHS group), (3) an HFHS diet enriched with FO (FO group), (4) an HFHS diet enriched with GSE (GSE group) or (5) an HFHS diet enriched with FO and GSE (FO + GSE group). In the liver, endogenous antioxidants were measured using spectrophotometric and fluorometric techniques, and non-targeted lipidomics was conducted for the assessment of DAG and ceramides. After 24 weeks, the FO + GSE group showed increased glutathione peroxidase activity, as well as monounsaturated fatty acid and polyunsaturated fatty acid-containing DAG, and long-chain fatty acid-containing ceramides abundances compared to the STD group. The FO and GSE combination induced similar activation of the antioxidant system and bioactive lipid accumulation in the liver than the HFHS diet without supplementation. In addition, the FO and GSE combination increased the abundances of polyunsaturated fatty acid-containing DAG in the liver.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Extrato de Sementes de Uva/administração & dosagem , Resistência à Insulina , Fígado/efeitos dos fármacos , Animais , Ceramidas/análise , Ceramidas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Diglicerídeos/análise , Diglicerídeos/metabolismo , Modelos Animais de Doenças , Ácidos Graxos Insaturados , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Fígado/metabolismo , Ratos
4.
Mar Drugs ; 18(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906027

RESUMO

Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fígado/efeitos dos fármacos , Polifenóis/farmacologia , Proteínas/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Fígado/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/administração & dosagem , Carbonilação Proteica/efeitos dos fármacos , Proteômica , Ratos , Ratos Endogâmicos WKY , Vitis/química
5.
Am J Physiol Endocrinol Metab ; 314(6): E552-E563, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351480

RESUMO

Insulin resistance (IR) and impaired glucose tolerance (IGT) are the first manifestations of diet-induced metabolic alterations leading to Type 2 diabetes, while hypertension is the deadliest risk factor of cardiovascular disease. The roles of dietary fat and fructose in the development of IR, IGT, and hypertension are controversial. We tested the long-term effects of an excess of fat or sucrose (fructose/glucose) on healthy male Wistar-Kyoto (WKY) rats. Fat affects IR and IGT earlier than fructose through low-grade systemic inflammation evidenced by liver inflammatory infiltration, increased levels of plasma IL-6, PGE2, and reduced levels of protective short-chain fatty acids without triggering hypertension. Increased populations of gut Enterobacteriales and Escherichia coli may contribute to systemic inflammation through the generation of lipopolysaccharides. Unlike fat, fructose induces increased levels of diacylglycerols (lipid mediators of IR) in the liver, urine F2-isoprostanes (markers of systemic oxidative stress), and uric acid, and triggers hypertension. Elevated populations of Enterobacteriales and E. coli were only detected in rats given an excess of fructose at the end of the study. Dietary fat and fructose trigger IR and IGT in clearly differentiated ways in WKY rats: early low-grade inflammation and late direct lipid toxicity, respectively; gut microbiota plays a role mainly in fat-induced IR, and hypertension is independent of inflammation-mediated IR. The results provide evidence that suggests that the combination of fat and sugar is potentially more harmful than fat or sugar alone when taken in excess.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Açúcares da Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/etiologia , Resistência à Insulina , Animais , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
6.
Eur J Nutr ; 57(1): 339-349, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27730364

RESUMO

PURPOSE: Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). METHODS: Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. RESULTS: A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. CONCLUSIONS: These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Extrato de Sementes de Uva/química , Proantocianidinas/metabolismo , Vitis , Animais , Catequina/metabolismo , Dieta , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Extrato de Sementes de Uva/administração & dosagem , Proantocianidinas/administração & dosagem , Proantocianidinas/urina , Ratos , Ratos Endogâmicos WKY
7.
Mar Drugs ; 16(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261666

RESUMO

The present study addressed the ability of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFA), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to ameliorate liver protein damage derived from oxidative stress and induced by consumption of high-caloric diets, typical of Westernized countries. The experimental design included an animal model of Sprague-Dawley rats fed high-fat high-sucrose (HFHS) diet supplemented with ω-3 EPA and DHA for a complete hepatic proteome analysis to map carbonylated proteins involved in specific metabolic pathways. Results showed that the intake of marine ω-3 PUFA through diet significantly decreased liver protein carbonylation caused by long-term HFHS consumption and increased antioxidant system. Fish oil modulated the carbonylation level of more than twenty liver proteins involved in critical metabolic pathways, including lipid metabolism (e.g., albumin), carbohydrate metabolism (e.g., pyruvate carboxylase), detoxification process (e.g., aldehyde dehydrogenase 2), urea cycle (e.g., carbamoyl-phosphate synthase), cytoskeleton dynamics (e.g., actin), or response to oxidative stress (e.g., catalase) among others, which might be under the control of diet marine ω-3 PUFA. In parallel, fish oil significantly changed the liver fatty acid profile given by the HFHS diet, resulting in a more anti-inflammatory phenotype. In conclusion, the present study highlights the significance of marine ω-3 PUFA intake for the health of rats fed a Westernized diet by describing several key metabolic pathways which are protected in liver.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Doenças Metabólicas/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/farmacologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Br J Nutr ; 117(2): 209-217, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28166850

RESUMO

Human milk contains bioactive compounds that confer a protective role against gastrointestinal infections. In order to find supplements for an infant formula able to mimic these benefits of breast-feeding, two different concepts were tested. The products consisted of the following: (1) a Bifidobacterium breve- and Streptococcus thermophilus-fermented formula and (2) a combination of short-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides with pectin-derived acidic oligosaccharides. A rotavirus infection suckling rat model was used to evaluate improvements in the infectious process and in the immune response of supplemented animals. Both nutritional concepts caused amelioration of the clinical symptoms, even though this was sometimes hidden by softer stool consistency in the supplemented groups. Both products also showed certain modulation of immune response, which seemed to be enhanced earlier and was accompanied by a faster resolution of the process. The viral shedding and the in vitro blocking assay suggest that these products are able to bind the viral particles, which can result in a milder infection. In conclusion, both concepts evaluated in this study showed interesting protective properties against rotavirus infection, which deserve to be investigated further.


Assuntos
Bactérias , Aleitamento Materno , Fermentação , Gastroenterite/prevenção & controle , Leite/microbiologia , Oligossacarídeos/uso terapêutico , Infecções por Rotavirus/complicações , Animais , Animais Recém-Nascidos , Bifidobacterium , Suplementos Nutricionais , Frutose/farmacologia , Frutose/uso terapêutico , Galactose/farmacologia , Galactose/uso terapêutico , Gastroenterite/etiologia , Gastroenterite/virologia , Humanos , Lactente , Fórmulas Infantis , Fenômenos Fisiológicos da Nutrição do Lactente , Leite Humano/química , Oligossacarídeos/farmacologia , Pectinas/química , Ratos , Rotavirus , Infecções por Rotavirus/virologia , Streptococcus thermophilus , Eliminação de Partículas Virais
9.
Nanomedicine ; 12(7): 1885-1897, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27133189

RESUMO

Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80nm poly-methylmethacrylate core-shell fluorescent nanoparticles (FNP) loaded with the photosensitizer tetrasulfonated aluminum phthalocyanine (Ptl). To demonstrate the efficacy of our Ptl@FNP we performed in vitro and in vivo studies using a human prostate tumor model. Our data reveal that Ptl@FNP are internalized by tumor cells, favour Ptl intracellular accumulation, and efficiently trigger cell death through the generation of ROS upon irradiation with 680nm light. When directly injected into tumors intramuscularly induced in SCID mice, Ptl@FNP upon irradiation significantly reduce tumor growth with higher efficiency than the bare Ptl. Collectively, these results demonstrate that the newly developed nanoparticles may be utilized as a delivery system for antitumor phototherapy in solid cancers.


Assuntos
Indóis/administração & dosagem , Nanopartículas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Isoindóis , Masculino , Camundongos , Camundongos SCID
10.
Br J Nutr ; 113(6): 878-87, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25720761

RESUMO

The increasing incidence of the metabolic syndrome (MetS), a combination of risk factors before the onset of CVD and type 2 diabetes, encourages studies on the role of functional food components such as long-chain n-3 PUFA as preventive agents. In the present study, we explore the effect of EPA and DHA supplementation in different proportions on spontaneously hypertensive obese (SHROB) rats, a model for the MetS in a prediabetic state with mild oxidative stress. SHROB rats were randomised into four groups (n 7), each supplemented with EPA/DHA at ratios of 1:1, 2:1 and 1:2, or soyabean oil as the control for 13 weeks. The results showed that in all the proportions tested, EPA/DHA supplementation significantly lowered total and LDL-cholesterol concentrations, compared with those of the control group. EPA/DHA supplementation at the ratios of 1:1 and 2:1 significantly decreased inflammation (C-reactive protein levels) and lowered oxidative stress (decreased excretion of urinary isoprostanes), mainly at the ratio of 1:2. The activity of antioxidant enzymes increased in erythrocytes, abdominal fat and kidneys, with magnitudes depending on the EPA:DHA ratio. PUFA mixtures from fish affected different MetS markers of CVD risk factors in SHROB rats, depending on the ratios of EPA/DHA supplementation. The activation of endogenous defence systems may be related to the reduction of inflammation and oxidative stress.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Hipertensão/prevenção & controle , Síndrome Metabólica/dietoterapia , Obesidade/complicações , Estado Pré-Diabético/prevenção & controle , Gordura Abdominal/enzimologia , Gordura Abdominal/imunologia , Gordura Abdominal/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Proteína C-Reativa/análise , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Eritrócitos/enzimologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Feminino , Óleos de Peixe/administração & dosagem , Óleos de Peixe/uso terapêutico , Hipercolesterolemia/etiologia , Hipercolesterolemia/prevenção & controle , Hipertensão/etiologia , Rim/enzimologia , Rim/imunologia , Rim/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/imunologia , Síndrome Metabólica/fisiopatologia , Estresse Oxidativo , Oxirredutases/sangue , Oxirredutases/metabolismo , Estado Pré-Diabético/etiologia , Distribuição Aleatória , Ratos Mutantes
11.
Antioxidants (Basel) ; 13(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38247527

RESUMO

The regular intake of diets high in saturated fat and sugars increases oxidative stress and has been linked to cognitive decline and premature brain aging. The cerebellum is highly vulnerable to oxidative stress and thus, obesogenic diets might be particularly detrimental to this tissue. However, the precise molecular mechanisms behind obesity-related brain damage are still not clear. Since protein carbonylation, a biomarker of oxidative stress, influences protein functions and is involved in metabolic control, the current investigation addressed the effect of long-term high-fat and high-sucrose diet intake on the cerebellum of Sprague-Dawley rats by deciphering the changes caused in the carbonylated proteome. The antioxidant effects of fish oil supplementation on cerebellar carbonylated proteins were also investigated. Lipid peroxidation products and carbonylated proteins were identified and quantified using immunoassays and 2D-LC-MS/MS in the cerebellum. After 21 weeks of nutritional intervention, the obesogenic diet selectively increased carbonylation of the proteins that participate in ATP homeostasis and glutamate metabolism in the cerebellum. Moreover, the data demonstrated that fish oil supplementation restrained carbonylation of the main protein targets oxidatively damaged by the obesogenic diet, and additionally protected against carbonylation of several other proteins involved in amino acid biosynthesis and neurotransmission. Therefore, dietary interventions with fish oils could help the cerebellum to be more resilient to oxidative damage. The results could shed some light on the effect of high-fat and high-sucrose diets on redox homeostasis in the cerebellum and boost the development of antioxidant-based nutritional interventions to improve cerebellum health.

12.
Nutrients ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37432326

RESUMO

Chlorella is a marine microalga rich in proteins and containing all the essential amino acids. Chlorella also contains fiber and other polysaccharides, as well as polyunsaturated fatty acids such as linoleic acid and alpha-linolenic acid. The proportion of the different macronutrients in Chlorella can be modulated by altering the conditions in which it is cultured. The bioactivities of these macronutrients make Chlorella a good candidate food to include in regular diets or as the basis of dietary supplements in exercise-related nutrition both for recreational exercisers and professional athletes. This paper reviews current knowledge of the effects of the macronutrients in Chlorella on physical exercise, specifically their impact on performance and recovery. In general, consuming Chlorella improves both anaerobic and aerobic exercise performance as well as physical stamina and reduces fatigue. These effects seem to be related to the antioxidant, anti-inflammatory, and metabolic activity of all its macronutrients, while each component of Chlorella contributes its bioactivity via a specific action. Chlorella is an excellent dietary source of high-quality protein in the context of physical exercise, as dietary proteins increase satiety, activation of the anabolic mTOR (mammalian Target of Rapamycin) pathway in skeletal muscle, and the thermic effects of meals. Chlorella proteins also increase intramuscular free amino acid levels and enhance the ability of the muscles to utilize them during exercise. Fiber from Chlorella increases the diversity of the gut microbiota, which helps control body weight and maintain intestinal barrier integrity, and the production of short-chain fatty acids (SCFAs), which improve physical performance. Polyunsaturated fatty acids (PUFAs) from Chlorella contribute to endothelial protection and modulate the fluidity and rigidity of cell membranes, which may improve performance. Ultimately, in contrast to several other nutritional sources, the use of Chlorella to provide high-quality protein, dietary fiber, and bioactive fatty acids may also significantly contribute to a sustainable world through the fixation of carbon dioxide and a reduction of the amount of land used to produce animal feed.


Assuntos
Chlorella , Animais , Nutrientes , Aminoácidos Essenciais , Fibras na Dieta/farmacologia , Exercício Físico , Mamíferos
13.
Antioxidants (Basel) ; 12(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36978999

RESUMO

Obesity has been recognized as a major risk factor for chronic kidney disease, insulin resistance being an early common metabolic feature in patients suffering from this syndrome. This study aims to investigate the mechanism underlying the induction of kidney dysfunction and the concomitant onset of insulin resistance by long-term high-fat and sucrose diet feeding in Sprague Dawley rats. To achieve this goal, our study analyzed renal carbonylated protein patterns, ectopic lipid accumulation and fatty acid profiles and correlated them with biometrical and biochemical measurements and other body redox status parameters. Rats fed the obesogenic diet developed a prediabetic state and incipient kidney dysfunction manifested in increased plasma urea concentration and superior levels of renal fat deposition and protein carbonylation. An obesogenic diet increased renal fat by preferentially promoting the accumulation of saturated fat, arachidonic, and docosahexaenoic fatty acids while decreasing oleic acid. Renal lipotoxicity was accompanied by selectively higher carbonylation of proteins involved in the blood pH regulation, i.e., bicarbonate reclamation and synthesis, amino acid, and glucose metabolisms, directly related to the onset of insulin resistance. This study also tested the combination of antioxidant properties of fish oil with the anti-diabetic properties of buckwheat D-Fagomine to counteract diet-induced renal alterations. Results demonstrated that bioactive compounds combined attenuated lipotoxicity, induced more favorable lipid profiles and counteracted the excessive carbonylation of proteins associated with pH regulation in the kidneys, resulting in an inhibition of the progression of the prediabetes state and kidney disease.

14.
Biomed Pharmacother ; 168: 115708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857255

RESUMO

High daily intake of saturated fats and refined carbohydrates, which often leads to obesity and overweight, has been associated with cognitive impairment, premature brain aging and the aggravation of neurodegenerative diseases. Although the molecular pathology of obesity-related brain damage is not fully understood, the increased levels of oxidative stress induced by the diet seem to be definitively involved. Being protein carbonylation determinant for protein activity and function and a main consequence of oxidative stress, this study aims to investigate the effect of the long-term high-fat and sucrose diet intake on carbonylated proteome of the cerebral cortex of Sprague-Dawley rats. To achieve this goal, the study identified and quantified the carbonylated proteins and lipid peroxidation products in the cortex, and correlated them with biometrical, biochemical and other redox status parameters. Results demonstrated that the obesogenic diet selectively increased oxidative damage of specific proteins that participate in fundamental pathways for brain function, i.e. energy production, glucose metabolism and neurotransmission. This study also evaluated the antioxidant properties of fish oil to counteract diet-induced brain oxidative damage. Fish oil supplementation demonstrated a stronger capacity to modulate carbonylated proteome in the brain cortex. Data indicated that fish oils did not just decrease carbonylation of proteins affected by the obesogenic diet, but also decreased the oxidative damage of other proteins participating in the same metabolic functions, reinforcing the beneficial effect of the supplement on those pathways. The results could help contribute to the development of successful nutritional-based interventions to prevent cognitive decline and promote brain health.


Assuntos
Óleos de Peixe , Proteoma , Ratos , Animais , Óleos de Peixe/farmacologia , Sacarose , Ratos Sprague-Dawley , Dieta , Suplementos Nutricionais , Estresse Oxidativo , Obesidade , Córtex Cerebral , Dieta Hiperlipídica/efeitos adversos
15.
Br J Nutr ; 107(4): 523-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21771382

RESUMO

Previously we established that a cocoa-enriched diet in young rats reduces specific antibody production and the T helper (Th) lymphocyte proportion in lymphoid tissues. The aim of the present study was to ascertain the modulatory ability of a cocoa flavonoid-enriched diet on collagen-induced arthritis (CIA), which is mediated by anti-collagen autoantibody response and Th lymphocyte activation. Female Louvain (LOU) rats were fed with a cocoa-enriched diet, beginning 2 weeks before CIA induction. Hind-paw swelling and serum cytokine and anti-collagen antibody concentrations were determined. Anti-collagen antibody-secreting cell counts and lymphocyte subset proportions were established in inguinal lymph nodes (ILN). Reactive oxygen species (ROS), nitric oxide (NO) and TNFα produced by peritoneal macrophages were determined. Although arthritic cocoa-fed rats showed a similar hind-paw swelling time course as the arthritic animals fed a standard diet, the cocoa intake was able to decrease specific IgG2a, IgG2b and IgG2c titres. Moreover, cocoa intake in CIA rats reduced ROS production, TNFα and NO release from peritoneal macrophages, and decreased the Th:cytotoxic T cell ratio in ILN. In conclusion, a cocoa flavonoid-enriched diet in LOU rats with CIA produced no effect on hind-paw swelling but was able to modulate the specific antibody response and also the Th lymphocyte proportion, as well as the synthesis of pro-inflammatory mediators from peritoneal macrophages. Therefore, a cocoa-enriched diet could be a good adjuvant therapy in disorders with oxidative stress or autoimmune pathogenesis.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/dietoterapia , Artrite Experimental/imunologia , Doenças Autoimunes/dietoterapia , Doenças Autoimunes/imunologia , Cacau/química , Flavonoides/uso terapêutico , Abdome , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Autoanticorpos/análise , Doenças Autoimunes/metabolismo , Doenças Autoimunes/fisiopatologia , Feminino , Flavonoides/administração & dosagem , Alimento Funcional , Linfonodos/imunologia , Linfonodos/patologia , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Óxido Nítrico/metabolismo , Distribuição Aleatória , Ratos , Ratos Endogâmicos , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/metabolismo
16.
Br J Nutr ; 107(3): 378-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21762542

RESUMO

Cocoa and its flavonoids have potential anti-inflammatory properties in vitro and in acute inflammation models in vivo. The aim of the present study was to ascertain the effects of two cocoa-enriched diets on adjuvant arthritis (AA) in rats, considering not only clinical and biochemical inflammatory indices, but also antibody response and lymphocyte composition. Female Wistar rats were fed with a 5 or 10 % cocoa-enriched diet beginning 2 weeks before arthritis induction and until the end of the study. AA was induced by an intradermal injection of heat-killed Mycobacterium butyricum suspension. The hind-paw swelling (plethysmometry), serum anti-mycobacterial antibody concentration (ELISA), blood and inguinal lymph node lymphocyte subset percentage (flow cytometry), and IL-2, interferon γ and PGE2 released from splenocytes (ELISA) were assessed. Although the cocoa diets had no significant effect on hind-paw swelling, a tendency to reduce it was observed at the end of the study. Cocoa-enriched diets were able to decrease the serum anti-mycobacterial antibody concentration and the splenocyte PGE2 production, as well as the proportion of T-helper (Th) lymphocytes in blood and regional lymph nodes, which probably includes cells responsible for the arthritic process. The cocoa diets prevented a decrease in the proportion of regulatory T-cells in blood and a disequilibrium between inguinal lymph node natural killer (NK) CD8⁺ and NK CD8⁻ subsets. In conclusion, the cocoa-enriched diets during AA were not able to significantly decrease joint inflammation but modified Th-cell proportions and prevented specific antibody synthesis.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/prevenção & controle , Cacau/química , Dieta , Flavonoides/uso terapêutico , Linfócitos/imunologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/análise , Anticorpos Antibacterianos/análise , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Células Cultivadas , Dinoprostona/metabolismo , Feminino , Flavonoides/administração & dosagem , Flavonoides/análise , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/patologia , Contagem de Linfócitos , Linfócitos/metabolismo , Linfócitos/patologia , Mycobacterium/imunologia , Distribuição Aleatória , Ratos , Ratos Wistar , Baço/imunologia , Baço/metabolismo , Baço/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia
17.
Nutrients ; 14(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35276982

RESUMO

Oleanolic acid, a pentacyclic triterpenoid ubiquitously present in the plant kingdom, is receiving outstanding attention from the scientific community due to its biological activity against multiple diseases. Oleanolic acid is endowed with a wide range of biological activities with therapeutic potential by means of complex and multifactorial mechanisms. There is evidence suggesting that oleanolic acid might be effective against dyslipidemia, diabetes and metabolic syndrome, through enhancing insulin response, preserving the functionality and survival of ß-cells and protecting against diabetes complications. In addition, several other functions have been proposed, including antiviral, anti-HIV, antibacterial, antifungal, anticarcinogenic, anti-inflammatory, hepatoprotective, gastroprotective, hypolipidemic and anti-atherosclerotic activities, as well as interfering in several stages of the development of different types of cancer; however, due to its hydrophobic nature, oleanolic acid is almost insoluble in water, which has led to a number of approaches to enhance its biopharmaceutical properties. In this scenario, the present review aimed to summarize the current knowledge and the research progress made in the last years on the extraction and characterization of oleanolic acid and its biological activities and the underlying mechanisms of action.


Assuntos
Células Secretoras de Insulina , Ácido Oleanólico , Triterpenos , Anti-Inflamatórios/farmacologia , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Plantas , Triterpenos/uso terapêutico
18.
Nutrients ; 14(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364917

RESUMO

The goal of this work is to explore if the changes induced by d-fagomine in the gut microbiota are compatible with its effect on body weight and inflammation markers in rats. Methods: Sprague Dawley rats were fed a standard diet supplemented with d-fagomine (or not, for comparison) for 6 months. The variables measured were body weight, plasma mediators of inflammation (hydroxyeicosatetraenoic acids, leukotriene B4, and IL-6), and the concentration of acetic acid in feces and plasma. The composition and diversities of microbiota in cecal content and feces were estimated using 16S rRNA metabarcoding and high-throughput sequencing. We found that after just 6 weeks of intake d-fagomine significantly reduced body weight gain, increased the plasma acetate concentration, and reduced the plasma concentration of the pro-inflammatory biomarkers' leukotriene B4, interleukin 6 and 12 hydroxyeicosatetraenoic acids. These changes were associated with a significantly increased prevalence of Bacteroides and Prevotella feces and increased Bacteroides, Prevotella, Clostridium, and Dysgonomonas while reducing Anaerofilum, Blautia, and Oribacterium in cecal content. In conclusion, d-fagomine induced changes in the composition and diversity of gut microbiota similar to those elicited by dietary fiber and compatible with its anti-inflammatory and body-weight-reducing effects.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , RNA Ribossômico 16S/genética , Leucotrieno B4 , Ratos Sprague-Dawley , Peso Corporal , Fibras na Dieta/farmacologia , Fezes/microbiologia , Inflamação , Ácidos Hidroxieicosatetraenoicos/farmacologia
19.
Foods ; 11(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36553814

RESUMO

The present study examined the influence of inulin on fecal microbiota, cardiometabolic risk factors, eicosanoids, and oxidative stress in rats on a high-fat (HF) diet. Thirty-six male Wistar-Kyoto rats were divided into three dietary groups: standard diet, HF diet, and HF diet + Inulin diet. After 10 weeks, the HF + Inulin diet promoted high dominance of a few bacterial genera including Blautia and Olsenella in feces while reducing richness, diversity, and rarity compared to the HF diet. These changes in fecal microbiota were accompanied by an increased amount of propionic acid in feces. The HF + Inulin diet decreased cardiometabolic risk factors, decreased the amount of the eicosanoids 11(12)-EET and 15-HETrE in the liver, and decreased oxidative stress in blood compared to the HF diet. In conclusion, increasing consumption of inulin may be a useful nutritional strategy to protect against the onset of obesity and its associated metabolic abnormalities by means of modulation of gut microbiota.

20.
Front Physiol ; 12: 673095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135770

RESUMO

The benefits of intermittent hypobaric hypoxia (IHH) exposure for health and its potential use as a training tool are well-documented. However, since hypobaric hypoxia and cold are environmental factors always strongly associated in the biosphere, additive or synergistic adaptations could have evolved in animals' genomes. For that reason, the aim of the present study was to investigate body composition and hematological and muscle morphofunctional responses to simultaneous intermittent exposure to hypoxia and cold. Adult male rats were randomly divided into four groups: (1) control, maintained in normoxia at 25°C (CTRL); (2) IHH exposed 4 h/day at 4,500 m (HYPO); (3) intermittent cold exposed 4 h/day at 4°C (COLD); and (4) simultaneously cold and hypoxia exposed (COHY). At the end of 9 and 21 days of exposure, blood was withdrawn and gastrocnemius (GAS) and tibialis anterior muscles, perigonadal and brown adipose tissue, diaphragm, and heart were excised. GAS transversal sections were stained for myofibrillar ATPase and succinate dehydrogenase for fiber typing and for endothelial ATPase to assess capillarization. Hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and glucose transporter 1 (GLUT1) from GAS samples were semi-quantified by Western blotting. COLD and HYPO underwent physiological adjustments such as higher brown adipose tissue weight and increase in blood-related oxygen transport parameters, while avoiding some negative effects of chronic exposure to cold and hypoxia, such as body weight and muscle mass loss. COHY presented an additive erythropoietic response and was prevented from right ventricle hypertrophy. Intermittent cold exposure induced muscle angiogenesis, and IHH seems to indicate better muscle oxygenation through fiber area reduction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa