Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 184(19): 4886-4903.e21, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433013

RESUMO

Engineering new functionality into living eukaryotic systems by enzyme evolution or de novo protein design is a formidable challenge. Cells do not rely exclusively on DNA-based evolution to generate new functionality but often utilize membrane encapsulation or formation of membraneless organelles to separate distinct molecular processes that execute complex operations. Applying this principle and the concept of two-dimensional phase separation, we develop film-like synthetic organelles that support protein translation on the surfaces of various cellular membranes. These sub-resolution synthetic films provide a path to make functionally distinct enzymes within the same cell. We use these film-like organelles to equip eukaryotic cells with dual orthogonal expanded genetic codes that enable the specific reprogramming of distinct translational machineries with single-residue precision. The ability to spatially tune the output of translation within tens of nanometers is not only important for synthetic biology but has implications for understanding the function of membrane-associated protein condensation in cells.


Assuntos
Células Eucarióticas/metabolismo , Organelas/metabolismo , Biossíntese de Proteínas , Aminoácidos/metabolismo , Código Genético , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
2.
Nature ; 617(7959): 162-169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100914

RESUMO

The approximately 120 MDa mammalian nuclear pore complex (NPC) acts as a gatekeeper for the transport between the nucleus and cytosol1. The central channel of the NPC is filled with hundreds of intrinsically disordered proteins (IDPs) called FG-nucleoporins (FG-NUPs)2,3. Although the structure of the NPC scaffold has been resolved in remarkable detail, the actual transport machinery built up by FG-NUPs-about 50 MDa-is depicted as an approximately 60-nm hole in even highly resolved tomograms and/or structures computed with artificial intelligence4-11. Here we directly probed conformations of the vital FG-NUP98 inside NPCs in live cells and in permeabilized cells with an intact transport machinery by using a synthetic biology-enabled site-specific small-molecule labelling approach paired with highly time-resolved fluorescence microscopy. Single permeabilized cell measurements of the distance distribution of FG-NUP98 segments combined with coarse-grained molecular simulations of the NPC allowed us to map the uncharted molecular environment inside the nanosized transport channel. We determined that the channel provides-in the terminology of the Flory polymer theory12-a 'good solvent' environment. This enables the FG domain to adopt expanded conformations and thus control transport between the nucleus and cytoplasm. With more than 30% of the proteome being formed from IDPs, our study opens a window into resolving disorder-function relationships of IDPs in situ, which are important in various processes, such as cellular signalling, phase separation, ageing and viral entry.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Proteínas Intrinsicamente Desordenadas , Complexo de Proteínas Formadoras de Poros Nucleares , Animais , Inteligência Artificial , Núcleo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Microscopia de Fluorescência
3.
Angew Chem Int Ed Engl ; 62(12): e202215460, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585954

RESUMO

Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.


Assuntos
Aminoácidos , Triazóis , Domínios Proteicos , Peptídeos/química , Acetilação
4.
Bioorg Med Chem ; 65: 116785, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525109

RESUMO

PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 23mer peptides, which is not optimal for their use in therapy due to potential stability and immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP to a 5mer peptide, involving several attempts considering structure-based virtual screening, high throughput screening and peptide sequence optimization. We provide here a strong pharmacophore as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in the future.


Assuntos
Peptídeos , Treonina , Sequência de Aminoácidos , Domínio Catalítico , Peptídeos/química , Fosforilação , Proteína Fosfatase 1/metabolismo , Treonina/metabolismo
5.
Chemistry ; 27(19): 6094-6099, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33577120

RESUMO

Bioorthogonal reactions are ideally suited to selectively modify proteins in complex environments, even in vivo. Kinetics and product stability of these reactions are crucial parameters to evaluate their usefulness for specific applications. Strain promoted inverse electron demand Diels-Alder cycloadditions (SPIEDAC) between tetrazines and strained alkenes or alkynes are particularly popular, as they allow ultrafast labeling inside cells. In combination with genetic code expansion (GCE)-a method that allows to incorporate noncanonical amino acids (ncAAs) site-specifically into proteins in vivo. These reactions enable residue-specific fluorophore attachment to proteins in living mammalian cells. Several SPIEDAC capable ncAAs have been presented and studied under diverse conditions, revealing different instabilities ranging from educt decomposition to product loss due to ß-elimination. To identify which compounds yield the best labeling inside living mammalian cells has frequently been difficult. In this study we present a) the synthesis of four new SPIEDAC reactive ncAAs that cannot undergo ß-elimination and b) a fluorescence flow cytometry based FRET-assay to measure reaction kinetics inside living cells. Our results, which at first sight can be seen conflicting with some other studies, capture GCE-specific experimental conditions, such as long-term exposure of the ring-strained ncAA to living cells, that are not taken into account in other assays.


Assuntos
Alcinos , Aminoácidos , Animais , Reação de Cicloadição , Corantes Fluorescentes , Proteínas
6.
Chembiochem ; 21(22): 3216-3219, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-32598534

RESUMO

Genetic code expansion (GCE) is a versatile tool to site-specifically incorporate a noncanonical amino acid (ncAA) into a protein, for example, to perform fluorescent labeling inside living cells. To this end, an orthogonal aminoacyl-tRNA-synthetase/tRNA (RS/tRNA) pair is used to insert the ncAA in response to an amber stop codon in the protein of interest. One of the drawbacks of this system is that, in order to achieve maximum efficiency, high levels of the orthogonal tRNA are required, and this could interfere with host cell functionality. To minimize the adverse effects on the host, we have developed an inducible GCE system that enables us to switch on tRNA or RS expression when needed. In particular, we tested different promotors in the context of the T-REx or Tet-On systems to control expression of the desired orthogonal tRNA and/or RS. We discuss our result with respect to the control of GCE components as well as efficiency. We found that only the T-REx system enables simultaneous control of tRNA and RS expression.


Assuntos
Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Eucariotos/genética , RNA de Transferência/genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos/metabolismo , Código Genético , Células HEK293 , Humanos , RNA de Transferência/metabolismo
7.
Methods Mol Biol ; 2563: 341-369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227482

RESUMO

Engineering new functionalities into living eukaryotic systems is one of the main goals of synthetic biology. To this end, often enzyme evolution or de novo protein design is employed, which each have their own advantages and disadvantages. As complimentary tools, we recently developed orthogonally translating and film-like synthetic organelles that allow to create new enzyme functionalities based on spatial separation. We applied this technology to genetic code expansion (GCE) and showed that it is possible to equip eukaryotic cells with multiple orthogonal genetic codes that enable the specific reprogramming of distinct translational machineries, each with single-residue precision.In this protocol, we describe how synthetic organelles can be used to perform mRNA selective GCE and how they can be further developed to allow the simultaneous incorporation of distinct noncanonical amino acids (ncAAs) into selected proteins and how this can be used to label proteins selectively with fluorescent dyes via bioorthogonal chemistry.


Assuntos
Aminoacil-tRNA Sintetases , Células Artificiais , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Corantes Fluorescentes , Código Genético , Proteínas/química , RNA Mensageiro/genética
8.
J Mol Biol ; 435(5): 167971, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36690068

RESUMO

In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.


Assuntos
Condensados Biomoleculares , Doença , Transição de Fase , Humanos
9.
J Mol Biol ; 434(8): 167454, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35033560

RESUMO

Membraneless organelles are capable of selectively performing complex tasks in living cells despite dynamically exchanging with their surroundings. This is an exquisite example how self-organization of proteins and RNAs can lead to more complex functionalities in living systems. Importantly, the absence of a membrane boundary can enable easier access to larger macromolecular complexes that can be challenging to be transported across a membrane. We previously formed orthogonally translating designer membraneless organelles by combining phase separation with kinesin motor proteins to highly enrich engineered translational factors in large organelles. We also showed that even submicron thick designer organelles can be formed, by mounting them onto membranes, which, presumable assisted by 2D condensation, leads to thin film-like condensates. In this study we show that orthogonal translation can also be built with fiber-like appearing organelles. Here, the microtubule-end binding protein EB1 was used to form fiber-like OT organelles along the microtubule cytoskeleton that perform highly selective and efficient orthogonal translation. We also show an improved simplified design of OT organelles. Together this extends OT organelle technology and demonstrates that the microtubule cytoskeleton is a powerful platform for advanced synthetic organelle engineering.


Assuntos
Bioengenharia , Proteínas Associadas aos Microtúbulos , Microtúbulos , Organelas , Biossíntese de Proteínas , Citoesqueleto/metabolismo , Humanos , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Organelas/metabolismo
10.
Curr Opin Chem Biol ; 64: 174-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34600419

RESUMO

The compartmentalization of specific functions into specialized organelles is a key feature of eukaryotic life. In particular, dynamic biomolecular condensates that are not membrane enclosed offer exciting opportunities for synthetic biology. In recent years, multiple approaches to generate and control condensates have been reported. Notably, multiple orthogonally translating organelles were designed that enable precise protein engineering inside living cells. Despite being built from only very few components, orthogonal translation can be engineered with subresolution precision at different places inside the same cell to create mammalian cells with multiple expanded genetic codes. This provides a pathway to engineer multiple proteins with multiple and distinct functionalities inside living eukaryotes and provides a general strategy toward spatially orthogonal enzyme engineering.


Assuntos
Condensados Biomoleculares , Células Eucarióticas , Animais , Células Eucarióticas/metabolismo , Código Genético , Mamíferos/genética , Organelas/metabolismo , Proteínas/metabolismo
11.
Science ; 363(6434)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923194

RESUMO

Nature regulates interference between cellular processes-allowing more complexity of life-by confining specific functions to organelles. Inspired by this concept, we designed an artificial organelle dedicated to protein engineering. We generated a membraneless organelle to translate only one type of messenger RNA-by recruiting an RNA-targeting system, stop codon-suppression machinery, and ribosomes-by means of phase separation and spatial targeting. This enables site-specific protein engineering with a tailored noncanonical function in response to one specific codon in the entire genome only in the protein of choice. Our results demonstrate a simple yet effective approach to the generation of artificial organelles that provides a route toward customized orthogonal translation and protein engineering in semisynthetic eukaryotic cells.


Assuntos
Códon/genética , Código Genético , Organelas/metabolismo , Organelas/ultraestrutura , Biossíntese de Proteínas/genética , Engenharia de Proteínas/métodos , RNA Mensageiro/genética , Animais , Células COS , Caenorhabditis elegans/genética , Membrana Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Lisina/análogos & derivados , Lisina/genética , Methanosarcina , Organelas/química , RNA de Transferência/química , Ribossomos/química , Biologia Sintética
12.
Cell Chem Biol ; 25(9): 1067-1074.e5, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-29937407

RESUMO

Protein phosphorylation regulates diverse processes in eukaryotic cells. Strategies for installing site-specific phosphorylation in target proteins in eukaryotic cells, through routes that are orthogonal to enzymatic post-translational modification, would provide a powerful route for defining the consequences of particular phosphorylations. Here we show that the SepRSv1.0/tRNAv1.0CUA pair (created from the Methanococcus maripaludis phosphoseryl-transfer RNA synthetase [MmSepRS]/Methanococcus janaschii [Mj]tRNAGCACys pair) is orthogonal in mammalian cells. We create a eukaryotic elongation factor 1 alpha (EF-1α) variant, EF-1α-Sep, that enhances phosphoserine incorporation, and combine this with a mutant of eRF1, and manipulations of the cell's phosphoserine biosynthetic pathway, to enable the genetically encoded incorporation of phosphoserine and its non-hydrolyzable phosphonate analog. Using this approach we demonstrate synthetic activation of a protein kinase in mammalian cells.


Assuntos
Código Genético , Organofosfonatos/metabolismo , Fosfosserina/análogos & derivados , Fosfosserina/metabolismo , Engenharia de Proteínas/métodos , Proteínas/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Vias Biossintéticas , Cristalografia por Raios X , Células HEK293 , Humanos , Mathanococcus/enzimologia , Mathanococcus/genética , Organofosfonatos/química , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Fosforilação , Fosfosserina/análise , Proteínas/química , Proteínas/metabolismo
14.
Nat Commun ; 6: 6516, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25784617

RESUMO

The limited structural diversity that a compound library represents severely restrains the discovery of bioactive small molecules for medicinal chemistry and chemical biology research, and thus calls for developing new divergent synthetic approaches to structurally diverse and complex scaffolds. Here we present a de novo branching cascades approach wherein simple primary substrates follow different cascade reactions to create various distinct molecular frameworks in a scaffold diversity phase. Later, the scaffold elaboration phase introduces further complexity to the scaffolds by creating a number of chiral centres and incorporating new hetero- or carbocyclic rings. Thus, employing N-phenyl hydroxylamine, dimethyl acetylenedicarboxylate and allene ester as primary substrates, a compound collection of sixty one molecules representing seventeen different scaffolds is built up that delivers a potent tubulin inhibitor, as well as inhibitors of the Hedgehog signalling pathway. This work highlights the immense potential of cascade reactions to deliver compound libraries enriched in structural and functional diversity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa