Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Immunity ; 51(3): 443-450.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422870

RESUMO

The presence of gallstones (cholelithiasis) is a highly prevalent and severe disease and one of the leading causes of hospital admissions worldwide. Due to its substantial health impact, we investigated the biological mechanisms that lead to the formation and growth of gallstones. We show that gallstone assembly essentially requires neutrophil extracellular traps (NETs). We found consistent evidence for the presence of NETs in human and murine gallstones and describe an immune-mediated process requiring activation of the innate immune system for the formation and growth of gallstones. Targeting NET formation via inhibition of peptidyl arginine deiminase type 4 or abrogation of reactive oxygen species (ROS) production, as well as damping of neutrophils by metoprolol, effectively inhibit gallstone formation in vivo. Our results show that after the physicochemical process of crystal formation, NETs foster their assembly into larger aggregates and finally gallstones. These insights provide a feasible therapeutic concept to prevent cholelithiasis in patients at risk.


Assuntos
Armadilhas Extracelulares/imunologia , Cálculos Biliares/imunologia , Neutrófilos/imunologia , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/imunologia
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542287

RESUMO

The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. We investigated biofilm and its particle-shedding phenomenon with electron microscopy and nanoparticle tracking analysis (NTA); biofilm shedding-neutrophil interactions were examined ex vivo with epi-fluorescence microscopy. For this purpose, we used acellular dental biofilm shedding, purified lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA) as activators, and the interleukin 8 receptor beta (CXCR2) inhibitor and the anti-interleukin 8 receptor alpha (CXCR1) antibody as modulators. The shedding of acellular dental biofilms overwhelmingly consists of bacterial extracellular vesicles (BEVs). The latter induced the moderate formation of neutrophil extracellular traps (NETs) in orally healthy subjects and a strong formation in patients with periodontitis. A CXCR2 inhibitor and an anti-CXCR1 antibody had a minor effect on NET formation. Neutrophils from patients with periodontitis exhibited NET hyper-responsiveness. BEVs were stronger inducers of NET formation than purified LPS and PMA. A plateau of neutrophil responsiveness is reached above the age of 40 years, indicating the abrupt switch of maladaptive trained immunity (TI) into the activated modus. Our results suggest that dental biofilms consist of and disseminate immense amounts of outer membrane vesicles (OMVs), which initiate NET formation via a non-canonical cytosolic LPS/caspase-4/11/Gasdermin D pathway. This modus of NET formation is independent of neutrophil elastase (NE), myeloperoxidase (MPO), peptidylarginine deiminase 4 (PAD4), and toll-like receptors (TLR). In periodontitis, the hyper-responsiveness of neutrophils to BEVs and the increased NET formation appear to be a consequence of TI.


Assuntos
Armadilhas Extracelulares , Periodontite , Humanos , Adulto , Neutrófilos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Armadilhas Extracelulares/metabolismo , Periodontite/metabolismo , Biofilmes
3.
Am J Hum Genet ; 107(3): 527-538, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32758447

RESUMO

Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%-41% of affected individuals harbor bi-allelic mutations in IL36RN, the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E-08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E-09); this effect was stronger when including IL36RN mutations (1.48E-13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP's pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.


Assuntos
Inflamação/genética , Interleucinas/genética , Peroxidase/genética , Psoríase/genética , Dermatopatias/genética , Adulto , Animais , Citocinas/genética , Armadilhas Extracelulares/genética , Feminino , Humanos , Inflamação/patologia , Interleucina-1/genética , Interleucinas/metabolismo , Masculino , Camundongos , Mutação/genética , Neutrófilos/metabolismo , Psoríase/patologia , Doenças Raras/enzimologia , Doenças Raras/genética , Doenças Raras/patologia , Pele/enzimologia , Pele/patologia , Dermatopatias/patologia
4.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901974

RESUMO

The break of the epithelial barrier of gingiva has been a subject of minor interest, albeit playing a key role in periodontal pathology, transitory bacteraemia, and subsequent systemic low-grade inflammation (LGI). The significance of mechanically induced bacterial translocation in gingiva (e.g., via mastication and teeth brushing) has been disregarded despite the accumulated knowledge of mechanical force effects on tight junctions (TJs) and subsequent pathology in other epithelial tissues. Transitory bacteraemia is observed as a rule in gingival inflammation, but is rarely observed in clinically healthy gingiva. This implies that TJs of inflamed gingiva deteriorate, e.g., via a surplus of lipopolysaccharide (LPS), bacterial proteases, toxins, Oncostatin M (OSM), and neutrophil proteases. The inflammation-deteriorated gingival TJs rupture when exposed to physiological mechanical forces. This rupture is characterised by bacteraemia during and briefly after mastication and teeth brushing, i.e., it appears to be a dynamic process of short duration, endowed with quick repair mechanisms. In this review, we consider the bacterial, immune, and mechanical factors responsible for the increased permeability and break of the epithelial barrier of inflamed gingiva and the subsequent translocation of both viable bacteria and bacterial LPS during physiological mechanical forces, such as mastication and teeth brushing.


Assuntos
Bacteriemia , Periodontite , Humanos , Gengiva , Lipopolissacarídeos/farmacologia , Periodontite/patologia , Inflamação/patologia , Bacteriemia/patologia
5.
Gut ; 71(12): 2414-2429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862250

RESUMO

OBJECTIVE: Bleeding ulcers and erosions are hallmarks of active ulcerative colitis (UC). However, the mechanisms controlling bleeding and mucosal haemostasis remain elusive. DESIGN: We used high-resolution endoscopy and colon tissue samples of active UC (n = 36) as well as experimental models of physical and chemical mucosal damage in mice deficient for peptidyl-arginine deiminase-4 (PAD4), gnotobiotic mice and controls. We employed endoscopy, histochemistry, live-cell microscopy and flow cytometry to study eroded mucosal surfaces during mucosal haemostasis. RESULTS: Erosions and ulcerations in UC were covered by fresh blood, haematin or fibrin visible by endoscopy. Fibrin layers rather than fresh blood or haematin on erosions were inversely correlated with rectal bleeding in UC. Fibrin layers contained ample amounts of neutrophils coaggregated with neutrophil extracellular traps (NETs) with detectable activity of PAD. Transcriptome analyses showed significantly elevated PAD4 expression in active UC. In experimentally inflicted wounds, we found that neutrophils underwent NET formation in a PAD4-dependent manner hours after formation of primary blood clots, and remodelled clots to immunothrombi containing citrullinated histones, even in the absence of microbiota. PAD4-deficient mice experienced an exacerbated course of dextrane sodium sulfate-induced colitis with markedly increased rectal bleeding (96 % vs 10 %) as compared with controls. PAD4-deficient mice failed to remodel blood clots on mucosal wounds eliciting impaired healing. Thus, NET-associated immunothrombi are protective in acute colitis, while insufficient immunothrombosis is associated with rectal bleeding. CONCLUSION: Our findings uncover that neutrophils induce secondary immunothrombosis by PAD4-dependent mechanisms. Insufficient immunothrombosis may favour rectal bleeding in UC.


Assuntos
Colite Ulcerativa , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4 , Colite Ulcerativa/metabolismo , Tromboinflamação , Fibrina/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361646

RESUMO

Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Inflamação/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo
7.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499449

RESUMO

Vascular occlusions in patients with coronavirus diseases 2019 (COVID-19) have been frequently reported in severe outcomes mainly due to a dysregulation of neutrophils mediating neutrophil extracellular trap (NET) formation. Lung specimens from patients with COVID-19 have previously shown a dynamic morphology, categorized into three types of pleomorphic occurrence based on histological findings in this study. These vascular occlusions in lung specimens were also detected using native endogenous fluorescence or NEF in a label-free method. The three types of vascular occlusions exhibit morphology of DNA rich neutrophil elastase (NE) poor (type I), NE rich DNA poor (type II), and DNA and NE rich (type III) cohort of eleven patients with six males and five females. Age and gender have been presented in this study as influencing variables linking the occurrence of several occlusions with pleomorphic contents within a patient specimen and amongst them. This study reports the categorization of pleomorphic occlusions in patients with COVID-19 and the detection of these occlusions in a label-free method utilizing NEF.


Assuntos
COVID-19 , Armadilhas Extracelulares , Doenças Vasculares , Masculino , Feminino , Humanos , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2 , Pulmão/patologia , Neutrófilos/patologia , Doenças Vasculares/patologia
8.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925019

RESUMO

Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription, and is referred to as ''trained immunity''. It acts via modulation of hematopoietic stem and progenitor cells (HSPCs). A main modulation driver is the sustained, persistent low-level transmission of lipopolysaccharide from the periodontal pocket into the peripheral blood. Subsequently, the neutrophil phenotype changes and neutrophils become hyper-responsive and prone to boosted formation of neutrophil extracellular traps (NET). Cytotoxic neutrophil proteases and histones are responsible for ulcer formations on the pocket epithelium, which foster bacteremia and endoxemia. The latter promote systemic low-grade inflammation (SLGI), a precondition for many systemic diseases and some of them, e.g., atherosclerosis, diabetes etc., can be triggered by SLGI alone. Either reverting the polarized neutrophils back to the homeostatic state or attenuation of neutrophil hyper-responsiveness in periodontitis might be an approach to diminish or even to prevent systemic diseases.


Assuntos
Doença/etiologia , Endotoxemia/imunologia , Neutrófilos/fisiologia , Periodontite/complicações , Animais , Endotoxemia/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Periodontite/imunologia , Periodontite/metabolismo
9.
FASEB J ; 33(1): 1401-1414, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130433

RESUMO

Papillon-Lefèvre syndrome (PLS) is characterized by nonfunctional neutrophil serine proteases (NSPs) and fulminant periodontal inflammation of unknown cause. Here we investigated neutrophil extracellular trap (NET)-associated aggregation and cytokine/chemokine-release/degradation by normal and NSP-deficient human and mouse granulocytes. Stimulated with solid or soluble NET inducers, normal neutrophils formed aggregates and both released and degraded cytokines/chemokines. With increasing cell density, proteolytic degradation outweighed release. Maximum output of cytokines/chemokines occurred mostly at densities between 2 × 107 and 4 × 107 neutrophils/cm3. Assessment of neutrophil density in vivo showed that these concentrations are surpassed during inflammation. Association with aggregated NETs conferred protection of neutrophil elastase against α1-antitrypsin. In contrast, eosinophils did not influence cytokine/chemokine concentrations. The proteolytic degradation of inflammatory mediators seen in NETs was abrogated in Papillon-Lefèvre syndrome (PLS) neutrophils. In summary, neutrophil-driven proteolysis of inflammatory mediators works as a built-in safeguard for inflammation. The absence of this negative feedback mechanism might be responsible for the nonresolving periodontitis seen in PLS.-Hahn, J., Schauer, C., Czegley, C., Kling, L., Petru, L., Schmid, B., Weidner, D., Reinwald, C., Biermann, M. H. C., Blunder, S., Ernst, J., Lesner, A., Bäuerle, T., Palmisano, R., Christiansen, S., Herrmann, M., Bozec, A., Gruber, R., Schett, G., Hoffmann, M. H. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/prevenção & controle , Neutrófilos/metabolismo , Inibidores de Proteases/metabolismo , Adolescente , Adulto , Animais , Humanos , Mediadores da Inflamação/metabolismo , Ionomicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/genética , Neutrófilos/efeitos dos fármacos , Periodontite/metabolismo , Proteólise , Acetato de Tetradecanoilforbol/farmacologia , Ácido Úrico/farmacologia
10.
Proc Natl Acad Sci U S A ; 113(40): E5856-E5865, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647892

RESUMO

The critical size for strong interaction of hydrophobic particles with phospholipid bilayers has been predicted to be 10 nm. Because of the wide spreading of nonpolar nanoparticles (NPs) in the environment, we aimed to reveal the ability of living organisms to entrap NPs via formation of neutrophil extracellular traps (NETs). Upon interaction with various cell types and tissues, 10- to 40-nm-sized NPs induce fast (<20 min) damage of plasma membranes and instability of the lysosomal compartment, leading to the immediate formation of NETs. In contrast, particles sized 100-1,000 nm behaved rather inertly. Resulting NET formation (NETosis) was accompanied by an inflammatory reaction intrinsically endowed with its own resolution, demonstrated in lungs and air pouches of mice. Persistence of small NPs in joints caused unremitting arthritis and bone remodeling. Small NPs coinjected with antigen exerted adjuvant-like activity. This report demonstrates a cellular mechanism that explains how small NPs activate the NETosis pathway and drive their entrapping and resolution of the initial inflammatory response.


Assuntos
Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Nanopartículas/química , Tamanho da Partícula , Animais , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Nanopartículas/ultraestrutura , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
11.
Eur J Immunol ; 46(1): 223-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26531064

RESUMO

Neutrophil extracellular trap (NET) formation contributes to gout, autoimmune vasculitis, thrombosis, and atherosclerosis. The outside-in signaling pathway triggering NET formation is unknown. Here, we show that the receptor-interacting protein kinase (RIPK)-1-stabilizers necrostatin-1 or necrostatin-1s and the mixed lineage kinase domain-like (MLKL)-inhibitor necrosulfonamide prevent monosodium urate (MSU) crystal- or PMA-induced NET formation in human and mouse neutrophils. These compounds do not affect PMA- or urate crystal-induced production of ROS. Moreover, neutrophils of chronic granulomatous disease patients are shown to lack PMA-induced MLKL phosphorylation. Genetic deficiency of RIPK3 in mice prevents MSU crystal-induced NET formation in vitro and in vivo. Thus, neutrophil death and NET formation may involve the signaling pathway defining necroptosis downstream of ROS production. These data imply that RIPK1, RIPK3, and MLKL could represent molecular targets in gout or other crystallopathies.


Assuntos
Armadilhas Extracelulares/metabolismo , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/imunologia , Animais , Western Blotting , Armadilhas Extracelulares/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/toxicidade , Ácidos Polimetacrílicos/toxicidade , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Ácido Úrico/toxicidade
12.
Appl Environ Microbiol ; 82(4): 1080-1089, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637604

RESUMO

The gut microbiota of termites and cockroaches represents complex metabolic networks of many diverse microbial populations. The distinct microenvironmental conditions within the gut and possible interactions among the microorganisms make it essential to investigate how far the metabolic properties of pure cultures reflect their activities in their natural environment. We established the cockroach Shelfordella lateralis as a gnotobiotic model and inoculated germfree nymphs with two bacterial strains isolated from the guts of conventional cockroaches. Fluorescence microscopy revealed that both strains specifically colonized the germfree hindgut. In diassociated cockroaches, the facultatively anaerobic strain EbSL (a new species of Enterobacteriaceae) always outnumbered the obligately anaerobic strain FuSL (a close relative of Fusobacterium varium), irrespective of the sequence of inoculation, which showed that precolonization by facultatively anaerobic bacteria does not necessarily favor colonization by obligate anaerobes. Comparison of the fermentation products of the cultures formed in vitro with those accumulated in situ indicated that the gut environment strongly affected the metabolic activities of both strains. The pure cultures formed the typical products of mixed-acid or butyrate fermentation, whereas the guts of gnotobiotic cockroaches accumulated mostly lactate and acetate. Similar shifts toward more-oxidized products were observed when the pure cultures were exposed to oxygen, which corroborated the strong effects of oxygen on the metabolic fluxes previously observed in termite guts. Oxygen microsensor profiles of the guts of germfree, gnotobiotic, and conventional cockroaches indicated that both gut tissue and microbiota contribute to oxygen consumption and suggest that the oxygen status influences the colonization success.


Assuntos
Baratas , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Vida Livre de Germes , Oxigênio , Aerobiose , Anaerobiose , Animais , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/metabolismo , Fusobacterium/crescimento & desenvolvimento , Fusobacterium/metabolismo
13.
Arthritis Rheumatol ; 75(6): 1039-1047, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36575650

RESUMO

OBJECTIVE: Gout flares that occur during urate-lowering therapy (ULT) are typically related to the shrinkage of tophi due to aggregated neutrophil extracellular traps (NETs) that have captured monosodium urate crystals in the tissues. The present study was undertaken to analyze the blocking effect of α1 -antitrypsin on neutrophil elastase, and it was found that α1 -antitrypsin induced rapid inflammation in the presence of unstable tophi. METHODS: Cell-free DNA levels in serum samples were compared between patients who experienced a varying number of gout flares. We investigated whether cell-free DNA in serum samples and α1 -antitrypsin could be altered after the initiation of ULT. In mice, an injection of monosodium urate monohydrate (MSU) crystals was used to form a mimic of tophi in the peritoneal cavity, which was then analyzed using immunofluorescence staining. Finally, we investigated the relapse of inflammation by analyzing the levels of α1 -antitrypsin in 2 kinds of artificial tophi and in tophus-bearing mice. RESULTS: Levels of cell-free DNA in serum samples correlated with the number of flares experienced by patients with tophaceous gout. ULT induced an increase in cell-free DNA in the serum of patients with tophi. Increases in levels of α1 -antitrypsin were seen in patients with tophi who received ULT. Chalk-like tophi removed from the peritoneal cavity of mice after MSU crystals induced inflammation showed abundant coexpression of interleukin-1ß (IL-1ß) and IL-6-associated NETs. A relapse in inflammation was induced by α1 -antitrypsin during the spontaneous resolution of MSU crystal-induced peritonitis. We observed that α1 -antitrypsin blocks cytokine degradation by neutrophil elastase during the resolution phase of tophi. CONCLUSION: ULT causes shrinkage of the tophi reflected by an increase in the levels of cell-free DNA in serum. In the resolution phase of tophi in mice, NET-associated neutrophil elastase degrades proinflammatory cytokines and, thus, ameliorates inflammation.


Assuntos
Armadilhas Extracelulares , Gota , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Elastase de Leucócito , Gota/metabolismo , Ácido Úrico/química , Doença Crônica , Inflamação
14.
Cell Death Differ ; 30(4): 861-875, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755071

RESUMO

Extracellular chromatin, for example in the form of neutrophil extracellular traps (NETs), is an important element that propels the pathological progression of a plethora of diseases. DNA drives the interferon system, serves as autoantigen, and forms the extracellular scaffold for proteins of the innate immune system. An insufficient clearance of extruded chromatin after the release of DNA from the nucleus into the extracellular milieu can perform a secret task of moonlighting in immune-inflammatory and occlusive disorders. Here, we discuss (I) the cellular events involved in the extracellular release of chromatin and NET formation, (II) the devastating consequence of a dysregulated NET formation, and (III) the imbalance between NET formation and clearance. We include the role of NET formation in the occlusion of vessels and ducts, in lung disease, in autoimmune diseases, in chronic oral disorders, in cancer, in the formation of adhesions, and in traumatic spinal cord injury. To develop effective therapies, it is of utmost importance to target pathways that cause decondensation of chromatin during exaggerated NET formation and aggregation. Alternatively, therapies that support the clearance of extracellular chromatin are conceivable.


Assuntos
Doenças Autoimunes , Armadilhas Extracelulares , Humanos , Cromatina/metabolismo , Neutrófilos , Armadilhas Extracelulares/metabolismo , DNA/metabolismo , Doenças Autoimunes/metabolismo , Doença Crônica
15.
Appl Environ Microbiol ; 78(8): 2758-67, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327579

RESUMO

Termites and cockroaches are closely related, with molecular phylogenetic analyses even placing termites within the radiation of cockroaches. The intestinal tract of wood-feeding termites harbors a remarkably diverse microbial community that is essential for the digestion of lignocellulose. However, surprisingly little is known about the gut microbiota of their closest relatives, the omnivorous cockroaches. Here, we present a combined characterization of physiological parameters, metabolic activities, and bacterial microbiota in the gut of Shelfordella lateralis, a representative of the cockroach family Blattidae, the sister group of termites. We compared the bacterial communities within each gut compartment using terminal-restriction fragment length polymorphism (T-RFLP) analysis and made a 16S rRNA gene clone library of the microbiota in the colon-the dilated part of the hindgut with the highest density and diversity of bacteria. The colonic community was dominated by members of the Bacteroidetes, Firmicutes (mainly Clostridia), and some Deltaproteobacteria. Spirochaetes and Fibrobacteres, which are abundant members of termite gut communities, were conspicuously absent. Nevertheless, detailed phylogenetic analysis revealed that many of the clones from the cockroach colon clustered with sequences previously obtained from the termite gut, which indicated that the composition of the bacterial community reflects at least in part the phylogeny of the host.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Baratas/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Isópteros/microbiologia , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Front Immunol ; 13: 872695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493525

RESUMO

The frequent severe COVID-19 course in patients with periodontitis suggests a link of the aetiopathogenesis of both diseases. The formation of intravascular neutrophil extracellular traps (NETs) is crucial to the pathogenesis of severe COVID-19. Periodontitis is characterised by an increased level of circulating NETs, a propensity for increased NET formation, delayed NET clearance and low-grade endotoxemia (LGE). The latter has an enormous impact on innate immunity and susceptibility to infection with SARS-CoV-2. LPS binds the SARS-CoV-2 spike protein and this complex, which is more active than unbound LPS, precipitates massive NET formation. Thus, circulating NET formation is the common denominator in both COVID-19 and periodontitis and other diseases with low-grade endotoxemia like diabetes, obesity and cardiovascular diseases (CVD) also increase the risk to develop severe COVID-19. Here we discuss the role of propensity for increased NET formation, DNase I deficiency and low-grade endotoxaemia in periodontitis as aggravating factors for the severe course of COVID-19 and possible strategies for the diminution of increased levels of circulating periodontitis-derived NETs in COVID-19 with periodontitis comorbidity.


Assuntos
COVID-19 , Endotoxemia , Armadilhas Extracelulares , Periodontite , Endotoxemia/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Neutrófilos , Periodontite/patologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
17.
J Vis Exp ; (186)2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993744

RESUMO

Ocular surface diseases include a range of disorders that disturb the functions and structures of the cornea, conjunctiva, and the associated ocular surface gland network. Meibomian glands (MG) secrete lipids that create a covering layer that prevents the evaporation of the aqueous part of the tear film. Neutrophils and extracellular DNA traps populate MG and the ocular surface in a mouse model of allergic eye disease. Aggregated neutrophil extracellular traps (aggNETs) formulate a mesh-like matrix composed of extracellular chromatin that occludes MG outlets and conditions MG dysfunction. Here, a method for inducing ocular surface inflammation and MG dysfunction is presented. The procedures for collecting organs related to the ocular surface, such as the cornea, conjunctiva, and eyelids, are described in detail. Using established techniques for processing each organ, the major morphological and histopathological features of MG dysfunction are also shown. Ocular exudates offer the opportunity to assess the inflammatory state of the ocular surface. These procedures enable the investigation of topical and systemic anti-inflammatory interventions at the preclinical level.


Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Animais , Túnica Conjuntiva/patologia , Síndromes do Olho Seco/patologia , Inflamação/patologia , Glândulas Tarsais/patologia , Camundongos , Lágrimas/química
18.
Front Immunol ; 13: 726153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222361

RESUMO

Phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation build the armory of neutrophils for the first line of defense against invading pathogens. All these processes are modulated by the microenvironment including tonicity, pH and oxygen levels. Here we investigated the neutrophil infiltration in cardiac tissue autopsy samples of patients with acute myocardial infarction (AMI) and compared these with tissues from patients with sepsis, endocarditis, dermal inflammation, abscesses and diseases with prominent neutrophil infiltration. We observed many neutrophils infiltrating the heart muscle after myocardial infarction. Most of these had viable morphology and only few showed signs of nuclear de-condensation, a hallmark of early NET formation. The abundance of NETs was the lowest in acute myocardial infarction when compared to other examined diseases. Since cardiac oxygen supply is abruptly abrogated in acute myocardial infarction, we hypothesized that the resulting tissue hypoxia increased the longevity of the neutrophils. Indeed, the viable cells showed increased nuclear hypoxia inducible factor-1α (HIF-1α) content, and only neutrophils with low HIF-1α started the process of NET formation (chromatin de-condensation and nuclear swelling). Prolonged neutrophil survival, increased oxidative burst and reduced NETs formation were reproduced under low oxygen tensions and by HIF-1α stabilization in vitro. We conclude that nuclear HIF-1α is associated with prolonged neutrophil survival and enhanced oxidative stress in hypoxic areas of AMI.


Assuntos
Armadilhas Extracelulares , Infarto do Miocárdio , Armadilhas Extracelulares/fisiologia , Humanos , Hipóxia/complicações , Infarto do Miocárdio/complicações , Neutrófilos/fisiologia , Oxigênio
19.
Cells ; 10(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34571857

RESUMO

The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.


Assuntos
Embolia/imunologia , Armadilhas Extracelulares/fisiologia , Trombose/imunologia , Animais , Líquidos Corporais/imunologia , Líquidos Corporais/fisiologia , Embolia/fisiopatologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação/patologia , Neutrófilos/imunologia , Estudos Prospectivos , Trombose/fisiopatologia
20.
Front Immunol ; 12: 788766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899756

RESUMO

The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.


Assuntos
Bactérias/imunologia , Armadilhas Extracelulares/imunologia , Gengiva/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Bolsa Periodontal/imunologia , Periodontite/imunologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Biofilmes/crescimento & desenvolvimento , Disbiose , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/microbiologia , Gengiva/metabolismo , Gengiva/microbiologia , Gengiva/patologia , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Bolsa Periodontal/metabolismo , Bolsa Periodontal/microbiologia , Bolsa Periodontal/patologia , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa