Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 622-627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759320

RESUMO

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Assuntos
Cicer/genética , Variação Genética , Genoma de Planta/genética , Análise de Sequência de DNA , Produtos Agrícolas/genética , Haplótipos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307566

RESUMO

Genomic offset statistics predict the maladaptation of populations to rapid habitat alteration based on association of genotypes with environmental variation. Despite substantial evidence for empirical validity, genomic offset statistics have well-identified limitations, and lack a theory that would facilitate interpretations of predicted values. Here, we clarified the theoretical relationships between genomic offset statistics and unobserved fitness traits controlled by environmentally selected loci and proposed a geometric measure to predict fitness after rapid change in local environment. The predictions of our theory were verified in computer simulations and in empirical data on African pearl millet (Cenchrus americanus) obtained from a common garden experiment. Our results proposed a unified perspective on genomic offset statistics and provided a theoretical foundation necessary when considering their potential application in conservation management in the face of environmental change.


Assuntos
Pennisetum , Pennisetum/genética , Genômica , Genótipo , Fenótipo
4.
Proc Natl Acad Sci U S A ; 117(41): 25618-25627, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989136

RESUMO

Global trade has considerably accelerated biological invasions. The annual tropical teosintes, the closest wild relatives of maize, were recently reported as new agricultural weeds in two European countries, Spain and France. Their prompt settlement under climatic conditions differing drastically from that of their native range indicates rapid genetic evolution. We performed a phenotypic comparison of French and Mexican teosintes under European conditions and showed that only the former could complete their life cycle during maize cropping season. To test the hypothesis that crop-to-wild introgression triggered such rapid adaptation, we used single nucleotide polymorphisms to characterize patterns of genetic variation in French, Spanish, and Mexican teosintes as well as in maize germplasm. We showed that both Spanish and French teosintes originated from Zea mays ssp. mexicana race "Chalco," a weedy teosinte from the Mexican highlands. However, introduced teosintes differed markedly from their Mexican source by elevated levels of genetic introgression from the high latitude Dent maize grown in Europe. We identified a clear signature of divergent selection in a region of chromosome 8 introgressed from maize and encompassing ZCN8, a major flowering time gene associated with adaptation to high latitudes. Moreover, herbicide assays and sequencing revealed that French teosintes have acquired herbicide resistance via the introgression of a mutant herbicide-target gene (ACC1) present in herbicide-resistant maize cultivars. Altogether, our results demonstrate that adaptive crop-to-wild introgression has triggered both rapid adaptation to a new climatic niche and acquisition of herbicide resistance, thereby fostering the establishment of an emerging noxious weed.


Assuntos
Adaptação Biológica/genética , Introgressão Genética/genética , Plantas Daninhas/genética , Zea mays/genética , Adaptação Biológica/fisiologia , Europa (Continente) , Evolução Molecular , Introgressão Genética/fisiologia , Resistência a Herbicidas/genética , Resistência a Herbicidas/fisiologia , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
5.
BMC Genomics ; 23(1): 490, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794552

RESUMO

BACKGROUND: Bulk segregant analysis (BSA) combined with next generation sequencing is a powerful tool to identify quantitative trait loci (QTL). The impact of the size of the study population and the percentage of extreme genotypes analysed have already been assessed. But a good comparison of statistical approaches designed to identify QTL regions using next generation sequencing (NGS) technologies for BSA is still lacking. RESULTS: We developed an R code to simulate QTLs in bulks of F2 contrasted lines. We simulated a range of recombination rates based on estimations using different crop species. The simulations were used to benchmark the ability of statistical methods identify the exact location of true QTLs. A single QTL led to a shift in allele frequency across a large fraction of the chromosome for plant species with low recombination rate. The smoothed version of all statistics performed best notably the smoothed Euclidean distance-based statistics was always found to be more accurate in identifying the location of QTLs. We propose a simulation approach to build confidence interval statistics for the detection of QTLs. CONCLUSION: We highlight the statistical methods best suited for BSA studies using NGS technologies in crops even when recombination rate is low. We also provide simulation codes to build confidence intervals and to assess the impact of recombination for application to other studies. This computational study will help select NGS-based BSA statistics that are useful to the broad scientific community.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Locos de Características Quantitativas , Benchmarking , Simulação por Computador , Frequência do Gene , Humanos
6.
Mol Ecol ; 31(6): 1627-1648, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33949023

RESUMO

The Amazon basin holds the world's largest freshwater fish diversity. Information on the intensity and timing of reproductive ecology of Amazonian fish is scant. We use a metabarcoding method by capture using a single probe to quantify species-level ichthyoplankton dynamics. We sampled the Marañón and the Ucayali rivers in Peru monthly for 2 years. We identified 97 species that spawned mainly during the flood start, the flood end or the receding periods, although some species had spawning activity in more than one period. This information was new for 40 of the species in the Amazon basin and 80 species in Peru. Most species ceased spawning for a month during a strong hydrological anomaly in January 2016, demonstrating the rapidity with which they react to environmental modifications during the breeding season. We also document another unreported event in the Amazon basin, the inverse phenology of species belonging to one genus (Triportheus). Overall larval flow in the Marañón was more than twice that of the Ucayali, including for most commercial species (between two and 20 times higher), whereas the Ucayali accounts for ~80% of the fisheries landings in the region. Our results are discussed in the light of the main anthropogenic threats to fishes, hydropower dam construction and the Hidrovía Amazónica, and should serve as a pre-impact baseline.


Assuntos
Peixes , Rios , Animais , Pesqueiros , Larva , Estações do Ano
7.
Mol Ecol ; 31(6): 1800-1819, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060228

RESUMO

Understanding vulnerabilities of plant populations to climate change could help preserve their biodiversity and reveal new elite parents for future breeding programmes. To this end, landscape genomics is a useful approach for assessing putative adaptations to future climatic conditions, especially in long-lived species such as trees. We conducted a population genomics study of 207 Coffea canephora trees from seven forests along different climate gradients in Uganda. For this, we sequenced 323 candidate genes involved in key metabolic and defence pathways in coffee. Seventy-one single nucleotide polymorphisms (SNPs) were found to be significantly associated with bioclimatic variables, and were thereby considered as putatively adaptive loci. These SNPs were linked to key candidate genes, including transcription factors, like DREB-like and MYB family genes controlling plant responses to abiotic stresses, as well as other genes of organoleptic interest, such as the DXMT gene involved in caffeine biosynthesis and a putative pest repellent. These climate-associated genetic markers were used to compute genetic offsets, predicting population responses to future climatic conditions based on local climate change forecasts. Using these measures of maladaptation to future conditions, substantial levels of genetic differentiation between present and future diversity were estimated for all populations and scenarios considered. The populations from the forests Zoka and Budongo, in the northernmost zone of Uganda, appeared to have the lowest genetic offsets under all predicted climate change patterns, while populations from Kalangala and Mabira, in the Lake Victoria region, exhibited the highest genetic offsets. The potential of these findings in terms of ex situ conservation strategies are discussed.


Assuntos
Coffea , Mudança Climática , Coffea/genética , Marcadores Genéticos , Melhoramento Vegetal , Uganda
8.
Glob Chang Biol ; 28(13): 4124-4142, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527235

RESUMO

The assessment of population vulnerability under climate change is crucial for planning conservation as well as for ensuring food security. Coffea canephora is, in its native habitat, an understorey tree that is mainly distributed in the lowland rainforests of tropical Africa. Also known as Robusta, its commercial value constitutes a significant revenue for many human populations in tropical countries. Comparing ecological and genomic vulnerabilities within the species' native range can provide valuable insights about habitat loss and the species' adaptive potential, allowing to identify genotypes that may act as a resource for varietal improvement. By applying species distribution models, we assessed ecological vulnerability as the decrease in climatic suitability under future climatic conditions from 492 occurrences. We then quantified genomic vulnerability (or risk of maladaptation) as the allelic composition change required to keep pace with predicted climate change. Genomic vulnerability was estimated from genomic environmental correlations throughout the native range. Suitable habitat was predicted to diminish to half its size by 2050, with populations near coastlines and around the Congo River being the most vulnerable. Whole-genome sequencing revealed 165 candidate SNPs associated with climatic adaptation in C. canephora, which were located in genes involved in plant response to biotic and abiotic stressors. Genomic vulnerability was higher for populations in West Africa and in the region at the border between DRC and Uganda. Despite an overall low correlation between genomic and ecological vulnerability at broad scale, these two components of vulnerability overlap spatially in ways that may become damaging. Genomic vulnerability was estimated to be 23% higher in populations where habitat will be lost in 2050 compared to regions where habitat will remain suitable. These results highlight how ecological and genomic vulnerabilities are relevant when planning on how to cope with climate change regarding an economically important species.


Assuntos
Coffea , Mudança Climática , Coffea/genética , Café , Genoma de Planta , Genômica , Humanos
9.
PLoS Genet ; 15(12): e1008512, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860672

RESUMO

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Assuntos
Aclimatação , Proteínas de Plantas/genética , Poaceae/crescimento & desenvolvimento , Locos de Características Quantitativas , Fluxo Gênico , Genética Populacional , Técnicas de Genotipagem , México , Repetições de Microssatélites , Fenótipo , Poaceae/classificação , Poaceae/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
10.
BMC Genomics ; 21(1): 777, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33167854

RESUMO

BACKGROUND: Pearl millet, a nutritious food for around 100 million people in Africa and India, displays extensive genetic diversity and a high degree of admixture with wild relatives. Two major morphotypes can be distinguished in Senegal: early-flowering Souna and late-flowering Sanio. Phenotypic variabilities related to flowering time play an important role in the adaptation of pearl millet to climate variability. A better understanding of the genetic makeup of these variabilities would make it possible to breed pearl millet to suit regions with different climates. The aim of this study was to characterize the genetic basis of these phenotypic differences. RESULTS: We defined a core collection that captures most of the diversity of cultivated pearl millets in Senegal and includes 60 early-flowering Souna and 31 late-flowering Sanio morphotypes. Sixteen agro-morphological traits were evaluated in the panel in the 2016 and 2017 rainy seasons. Phenological and phenotypic traits related with yield, flowering time, and biomass helped differentiate early- and late-flowering morphotypes. Further, using genotyping-by-sequencing (GBS), 21,663 single nucleotide polymorphisms (SNPs) markers with more than 5% of minor allele frequencies were discovered. Sparse non-negative matrix factorization (sNMF) analysis confirmed the genetic structure in two gene pools associated with differences in flowering time. Two chromosomal regions on linkage groups (LG 3) (~ 89.7 Mb) and (LG 6) (~ 68.1 Mb) differentiated two clusters among the early-flowering Souna. A genome-wide association study (GWAS) was used to link phenotypic variation to the SNPs, and 18 genes were linked to flowering time, plant height, tillering, and biomass (P-value < 2.3E-06). CONCLUSIONS: The diversity of early- and late-flowering pearl millet morphotypes in Senegal was captured using a heuristic approach. Key phenological and phenotypic traits, SNPs, and candidate genes underlying flowering time, tillering, biomass yield and plant height of pearl millet were identified. Chromosome rearrangements in LG3 and LG6 were inferred as a source of variation in early-flowering morphotypes. Using candidate genes underlying these features between pearl millet morphotypes will be of paramount importance in breeding for resilience to climatic variability.


Assuntos
Flores/fisiologia , Pennisetum , Clima , Estudos de Associação Genética , Índia , Pennisetum/genética , Pennisetum/fisiologia , Melhoramento Vegetal , Senegal
11.
PLoS Genet ; 13(5): e1006799, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28531201

RESUMO

Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic dataset based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that at synonymous positions, base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones.


Assuntos
Evolução Molecular , Genoma de Planta , Magnoliopsida/genética , Polimorfismo Genético , Sequência Rica em GC , Conversão Gênica , Seleção Genética
13.
BMC Genomics ; 18(1): 782, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025393

RESUMO

BACKGROUND: After cereals, root and tuber crops are the main source of starch in the human diet. Starch biosynthesis was certainly a significant target for selection during the domestication of these crops. But domestication of these root and tubers crops is also associated with gigantism of storage organs and changes of habitat. RESULTS: We studied here, the molecular basis of domestication in African yam, Dioscorea rotundata. The genomic diversity in the cultivated species is roughly 30% less important than its wild relatives. Two percent of all the genes studied showed evidences of selection. Two genes associated with the earliest stages of starch biosynthesis and storage, the sucrose synthase 4 and the sucrose-phosphate synthase 1 showed evidence of selection. An adventitious root development gene, a SCARECROW-LIKE gene was also selected during yam domestication. Significant selection for genes associated with photosynthesis and phototropism were associated with wild to cultivated change of habitat. If the wild species grow as vines in the shade of their tree tutors, cultivated yam grows in full light in open fields. CONCLUSIONS: Major rewiring of aerial development and adaptation for efficient photosynthesis in full light characterized yam domestication.


Assuntos
Dioscorea/genética , Domesticação , Genes de Plantas/genética , Fotossíntese/genética , Raízes de Plantas/crescimento & desenvolvimento , Seleção Genética , Amido/biossíntese , Dioscorea/crescimento & desenvolvimento , Dioscorea/metabolismo , Evolução Molecular , Variação Genética , Fototropismo/genética
14.
Mol Ecol ; 25(21): 5500-5512, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27664976

RESUMO

Uncovering genomic regions involved in adaption is a major goal in evolutionary biology. High-throughput sequencing now makes it possible to tackle this challenge in nonmodel species. Yet, despite the increasing number of methods targeted to specifically detect genomic footprints of selection, the complex demography of natural populations often causes high rates of false positive in gene discoveries. The aim of this study was to identify climate adaptations in wild pearl millet populations, Cenchrus americanus ssp. monodii. We focused on two climate gradients, one in Mali and one in Niger. We used a two-step strategy to limit false-positive outliers. First, we considered gradients as biological replicates and performed RNA sequencing of four populations at the extremities. We combined four methods-three based on differentiation among populations and one based on diversity patterns within populations-to identify outlier SNPs from a set of 87 218 high-quality SNPs. Among 11 155 contigs of pearl millet reference transcriptome, 540 exhibited selection signals as evidenced by at least one of the four methods. In a second step, we genotyped 762 samples in 11 additional populations distributed along the gradients using SNPs from the detected contigs and random SNPs as control. We further assessed selection on this large data set using a differentiation-based method and a method based on correlations with environmental variables based. Four contigs displayed consistent signatures between the four extreme and 11 additional populations, two of which were linked to abiotic and biotic stress responses.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Pennisetum/genética , Estresse Fisiológico , Clima , Genoma de Planta , Genótipo , Mali , Níger , Polimorfismo de Nucleotídeo Único , Transcriptoma
15.
Theor Appl Genet ; 127(1): 19-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114050

RESUMO

KEY MESSAGE: Linkage analysis confirmed the association in the region of PHYC in pearl millet. The comparison of genes found in this region suggests that PHYC is the best candidate. Major efforts are currently underway to dissect the phenotype-genotype relationship in plants and animals using existing populations. This method exploits historical recombinations accumulated in these populations. However, linkage disequilibrium sometimes extends over a relatively long distance, particularly in genomic regions containing polymorphisms that have been targets for selection. In this case, many genes in the region could be statistically associated with the trait shaped by the selected polymorphism. Statistical analyses could help in identifying the best candidate genes into such a region where an association is found. In a previous study, we proposed that a fragment of the PHYTOCHROME C gene (PHYC) is associated with flowering time and morphological variations in pearl millet. In the present study, we first performed linkage analyses using three pearl millet F2 families to confirm the presence of a QTL in the vicinity of PHYC. We then analyzed a wider genomic region of ~100 kb around PHYC to pinpoint the gene that best explains the association with the trait in this region. A panel of 90 pearl millet inbred lines was used to assess the association. We used a Markov chain Monte Carlo approach to compare 75 markers distributed along this 100-kb region. We found the best candidate markers on the PHYC gene. Signatures of selection in this region were assessed in an independent data set and pointed to the same gene. These results foster confidence in the likely role of PHYC in phenotypic variation and encourage the development of functional studies.


Assuntos
Desequilíbrio de Ligação , Pennisetum/genética , Fitocromo/genética , Sequência de Bases , Mapeamento Cromossômico , Estudos de Associação Genética , Cadeias de Markov , Dados de Sequência Molecular , Método de Monte Carlo , Locos de Características Quantitativas , Análise de Sequência de DNA
16.
Theor Appl Genet ; 127(10): 2211-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25119871

RESUMO

KEY MESSAGE: We present here the first curated collection of wild and cultivated African rice species. For that, we designed specific SNPs and were able to structure these very low diverse species. Oryza glaberrima, the cultivated African rice, is endemic from Africa. This species and its direct ancestor, O. barthii, are valuable tool for improvement of Asian rice O. sativa in terms of abiotic and biotic stress resistance. However, only a few limited studies about the genetic diversity of these species were performed. In the present paper, and for the first time at such extend, we genotyped 279 O. glaberrima, selected both for their impact in current breeding and for their geographical distribution, and 101 O. barthii, chosen based on their geographic origin, using a set of 235 SNPs specifically designed for African rice diversity. Using those data, we were able to structure the individuals from our sample in three populations for O. barthii, related to geography, and two populations in O. glaberrima; these two last populations cannot be linked however to any currently phenotyped trait. Moreover, we were also able to identify misclassification in O. glaberrima as well as in O. barthii and identified new form of O. sativa from the set of African varieties.


Assuntos
Variação Genética , Genótipo , Oryza/genética , África , DNA de Plantas/genética , Genética Populacional , Geografia , Hibridização Genética , Oryza/classificação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
17.
BMC Genet ; 15: 3, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393630

RESUMO

BACKGROUND: Association mapping studies offer great promise to identify polymorphisms associated with phenotypes and for understanding the genetic basis of quantitative trait variation. To date, almost all association mapping studies based on structured plant populations examined the main effects of genetic factors on the trait but did not deal with interactions between genetic factors and environment. In this paper, we propose a methodological prospect of mixed linear models to analyze genotype by environment interaction effects using association mapping designs. First, we simulated datasets to assess the power of linear mixed models to detect interaction effects. This simulation was based on two association panels composed of 90 inbreds (pearl millet) and 277 inbreds (maize). RESULTS: Based on the simulation approach, we reported the impact of effect size, environmental variation, allele frequency, trait heritability, and sample size on the power to detect the main effects of genetic loci and diverse effect of interactions implying these loci. Interaction effects specified in the model included SNP by environment interaction, ancestry by environment interaction, SNP by ancestry interaction and three way interactions. The method was finally used on real datasets from field experiments conducted on the two considered panels. We showed two types of interactions effects contributing to genotype by environment interactions in maize: SNP by environment interaction and ancestry by environment interaction. This last interaction suggests differential response at the population level in function of the environment. CONCLUSIONS: Our results suggested the suitability of mixed models for the detection of diverse interaction effects. The need of samples larger than that commonly used in current plant association studies is strongly emphasized to ensure rigorous model selection and powerful interaction assessment. The use of ancestry interaction component brought valuable information complementary to other available approaches.


Assuntos
Interação Gene-Ambiente , Estudos de Associação Genética , Modelos Genéticos , Pleiotropia Genética , Genótipo , Modelos Lineares , Panicum/genética , Polimorfismo de Nucleotídeo Único , Zea mays/genética
18.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294329

RESUMO

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Assuntos
Arabidopsis , Pennisetum , Secas , Pennisetum/genética , Glutarredoxinas , Estudo de Associação Genômica Ampla , Produtos Agrícolas
19.
Mol Biol Evol ; 29(4): 1199-212, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22114357

RESUMO

The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.


Assuntos
Evolução Molecular , Flores/genética , Genes de Plantas , Pennisetum/genética , Seleção Genética , Agricultura , Teorema de Bayes , Modelos Genéticos
20.
BMC Plant Biol ; 13: 178, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24219837

RESUMO

BACKGROUND: Clonal propagation is a particular reproductive system found in both the plant and animal kingdoms, from human parasites to clonally propagated crops. Clonal diversity provides information about plant and animal evolutionary history, i.e. how clones spread, or the age of a particular clone. In plants, this could provide valuable information about agrobiodiversity dynamics and more broadly about the evolutionary history of a particular crop. We studied the evolutionary history of yam, Dioscorea rotundata. In Africa, Yam is cultivated by tuber clonal propagation. RESULTS: We used 12 microsatellite markers to identify intra-clonal diversity in yam varieties. We then used this diversity to assess the relative ages of clones. Using simulations, we assessed how Approximate Bayesian Computation could use clonal diversity to estimate the age of a clone depending on the size of the sample, the number of independent samples and the number of markers. We then applied this approach to our particular dataset and showed that the relative ages of varieties could be estimated, and that each variety could be ranked by age. CONCLUSIONS: We give a first estimation of clone age in an approximate Bayesian framework. However the precise estimation of clone age depends on the precision of the mutation rate. We provide useful information on agrobiodiversity dynamics and suggest recurrent creation of varietal diversity in a clonally propagated crop.


Assuntos
Biodiversidade , Dioscorea/crescimento & desenvolvimento , Dioscorea/genética , Variação Genética , Agricultura , Células Clonais , Simulação por Computador , Loci Gênicos , Genótipo , Humanos , Taxa de Mutação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa