Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 137-162, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220977

RESUMO

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


Assuntos
DNA Glicosilases/química , DNA Polimerase Dirigida por DNA/química , DNA/química , Endonucleases/química , Genoma , Ligases/química , Liases/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Glicosilases/ultraestrutura , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/ultraestrutura , Endonucleases/metabolismo , Endonucleases/ultraestrutura , Eucariotos/genética , Eucariotos/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Instabilidade Genômica , Humanos , Ligases/metabolismo , Ligases/ultraestrutura , Liases/metabolismo , Liases/ultraestrutura , Modelos Moleculares , Mutagênese , Conformação de Ácido Nucleico , Conformação Proteica
2.
Cell ; 154(1): 157-68, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23827680

RESUMO

DNA polymerase (pol) ß is a model polymerase involved in gap-filling DNA synthesis utilizing two metals to facilitate nucleotidyl transfer. Previous structural studies have trapped catalytic intermediates by utilizing substrate analogs (dideoxy-terminated primer or nonhydrolysable incoming nucleotide). To identify additional intermediates during catalysis, we now employ natural substrates (correct and incorrect nucleotides) and follow product formation in real time with 15 different crystal structures. We are able to observe molecular adjustments at the active site that hasten correct nucleotide insertion and deter incorrect insertion not appreciated previously. A third metal binding site is transiently formed during correct, but not incorrect, nucleotide insertion. Additionally, long incubations indicate that pyrophosphate more easily dissociates after incorrect, compared to correct, nucleotide insertion. This appears to be coupled to subdomain repositioning that is required for catalytic activation/deactivation. The structures provide insights into a fundamental chemical reaction that impacts polymerase fidelity and genome stability.


Assuntos
Pareamento Incorreto de Bases , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Replicação do DNA , Humanos , Cloreto de Magnésio/metabolismo , Modelos Químicos
3.
Nucleic Acids Res ; 50(21): 12497-12514, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453989

RESUMO

RNA is modified by hundreds of chemical reactions and folds into innumerable shapes. However, the regulatory role of RNA sequence and structure and how dysregulation leads to diseases remain largely unknown. Here, we uncovered a mechanism where RNA abasic sites in R-loops regulate transcription by pausing RNA polymerase II. We found an enhancer RNA, AANCR, that regulates the transcription and expression of apolipoprotein E (APOE). In some human cells such as fibroblasts, AANCR is folded into an R-loop and modified by N-glycosidic cleavage; in this form, AANCR is a partially transcribed nonfunctional enhancer and APOE is not expressed. In contrast, in other cell types including hepatocytes and under stress, AANCR does not form a stable R-loop as its sequence is not modified, so it is transcribed into a full-length enhancer that promotes APOE expression. DNA sequence variants in AANCR are associated significantly with APOE expression and Alzheimer's Disease, thus AANCR is a modifier of Alzheimer's Disease. Besides AANCR, thousands of noncoding RNAs are regulated by abasic sites in R-loops. Together our data reveal the essentiality of the folding and modification of RNA in cellular regulation and demonstrate that dysregulation underlies common complex diseases such as Alzheimer's disease.


Assuntos
Doença de Alzheimer , Estruturas R-Loop , Humanos , RNA/genética , Doença de Alzheimer/genética , Transcrição Gênica , Apolipoproteínas E/genética
4.
Proc Natl Acad Sci U S A ; 117(34): 20689-20695, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788345

RESUMO

RNA abasic sites and the mechanisms involved in their regulation are mostly unknown; in contrast, DNA abasic sites are well-studied. We found surprisingly that, in yeast and human cells, RNA abasic sites are prevalent. When a base is lost from RNA, the remaining ribose is found as a closed-ring or an open-ring sugar with a reactive C1' aldehyde group. Using primary amine-based reagents that react with the aldehyde group, we uncovered evidence for abasic sites in nascent RNA, messenger RNA, and ribosomal RNA from yeast and human cells. Mass spectroscopic analysis confirmed the presence of RNA abasic sites. The RNA abasic sites were found to be coupled to R-loops. We show that human methylpurine DNA glycosylase cleaves N-glycosidic bonds on RNA and that human apurinic/apyrimidinic endonuclease 1 incises RNA abasic sites in RNA-DNA hybrids. Our results reveal that, in yeast and human cells, there are RNA abasic sites, and we identify a glycosylase that generates these sites and an AP endonuclease that processes them.


Assuntos
Sequência de Bases/genética , RNA/química , RNA/genética , Sítios de Ligação , DNA/química , Dano ao DNA/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Desoxirribonuclease I/metabolismo , Humanos , Nucleotídeos/genética , Estruturas R-Loop/genética , Saccharomyces cerevisiae/genética , Especificidade por Substrato , Leveduras/genética
5.
Proc Natl Acad Sci U S A ; 117(25): 14412-14420, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513688

RESUMO

Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.


Assuntos
Quebras de DNA de Cadeia Simples/efeitos da radiação , Reparo do DNA , DNA Topoisomerases Tipo I/metabolismo , Raios Ultravioleta/efeitos adversos , Sistemas CRISPR-Cas/genética , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Fibroblastos , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Cultura Primária de Células , Pele/citologia , Pele/patologia , Pele/efeitos da radiação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Xeroderma Pigmentoso/etiologia , Xeroderma Pigmentoso/patologia , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
6.
J Biol Chem ; 295(34): 12181-12187, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32647014

RESUMO

DNA polymerase (pol) ß catalyzes two reactions at DNA gaps generated during base excision repair, gap-filling DNA synthesis and lyase-dependent 5´-end deoxyribose phosphate removal. The lyase domain of pol ß has been proposed to function in DNA gap recognition and to facilitate DNA scanning during substrate search. However, the mechanisms and molecular interactions used by pol ß for substrate search and recognition are not clear. To provide insight into this process, a comparison was made of the DNA binding affinities of WT pol ß, pol λ, and pol µ, and several variants of pol ß, for 1-nt-gap-containing and undamaged DNA. Surprisingly, this analysis revealed that mutation of three lysine residues in the lyase active site of pol ß, 35, 68, and 72, to alanine (pol ß KΔ3A) increased the binding affinity for nonspecific DNA ∼11-fold compared with that of the WT. WT pol µ, lacking homologous lysines, displayed nonspecific DNA binding behavior similar to that of pol ß KΔ3A, in line with previous data demonstrating both enzymes were deficient in processive searching. In fluorescent microscopy experiments using mouse fibroblasts deficient in PARP-1, the ability of pol ß KΔ3A to localize to sites of laser-induced DNA damage was strongly decreased compared with that of WT pol ß. These data suggest that the three lysines in the lyase active site destabilize pol ß when bound to DNA nonspecifically, promoting DNA scanning and providing binding specificity for gapped DNA.


Assuntos
Dano ao DNA , DNA Polimerase beta/química , DNA/química , Animais , Domínio Catalítico , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Estabilidade Enzimática/genética , Humanos , Camundongos , Ligação Proteica
7.
J Biol Chem ; 295(2): 529-538, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31801827

RESUMO

DNA polymerase ß has two DNA-binding domains that interact with the opposite sides of short DNA gaps. These domains contribute two activities that modify the 5' and 3' margins of gapped DNA during base excision repair. DNA gaps greater than 1 nucleotide (nt) pose an architectural and logistical problem for the two domains to interact with their respective DNA termini. Here, crystallographic and kinetic analyses of 2-nt gap-filling DNA synthesis revealed that the fidelity of DNA synthesis depends on local sequence context. This was due to template dynamics that altered which of the two template nucleotides in the gap served as the coding nucleotide. We observed that, when a purine nucleotide was in the first coding position, DNA synthesis fidelity was similar to that observed with a 1-nt gap. However, when the initial templating nucleotide was a pyrimidine, fidelity was decreased. If the first templating nucleotide was a cytidine, there was a significantly higher probability that the downstream template nucleotide coded for the incoming nucleotide. This dNTP-stabilized misalignment reduced base substitution and frameshift deletion fidelities. A crystal structure of a binary DNA product complex revealed that the cytidine in the first templating site was in an extrahelical position, permitting the downstream template nucleotide to occupy the coding position. These results indicate that DNA polymerase ß can induce a strain in the DNA that modulates the position of the coding nucleotide and thereby impacts the identity of the incoming nucleotide. Our findings demonstrate that "correct" DNA synthesis can result in errors when template dynamics induce coding ambiguity.


Assuntos
DNA Polimerase beta/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Replicação do DNA , Ativação Enzimática , Estabilidade Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
8.
Nature ; 517(7536): 635-9, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25409153

RESUMO

Oxidative stress promotes genomic instability and human diseases. A common oxidized nucleoside is 8-oxo-7,8-dihydro-2'-deoxyguanosine, which is found both in DNA (8-oxo-G) and as a free nucleotide (8-oxo-dGTP). Nucleotide pools are especially vulnerable to oxidative damage. Therefore cells encode an enzyme (MutT/MTH1) that removes free oxidized nucleotides. This cleansing function is required for cancer cell survival and to modulate Escherichia coli antibiotic sensitivity in a DNA polymerase (pol)-dependent manner. How polymerases discriminate between damaged and non-damaged nucleotides is not well understood. This analysis is essential given the role of oxidized nucleotides in mutagenesis, cancer therapeutics, and bacterial antibiotics. Even with cellular sanitizing activities, nucleotide pools contain enough 8-oxo-dGTP to promote mutagenesis. This arises from the dual coding potential where 8-oxo-dGTP(anti) base pairs with cytosine and 8-oxo-dGTP(syn) uses its Hoogsteen edge to base pair with adenine. Here we use time-lapse crystallography to follow 8-oxo-dGTP insertion opposite adenine or cytosine with human pol ß, to reveal that insertion is accommodated in either the syn- or anti-conformation, respectively. For 8-oxo-dGTP(anti) insertion, a novel divalent metal relieves repulsive interactions between the adducted guanine base and the triphosphate of the oxidized nucleotide. With either templating base, hydrogen-bonding interactions between the bases are lost as the enzyme reopens after catalysis, leading to a cytotoxic nicked DNA repair intermediate. Combining structural snapshots with kinetic and computational analysis reveals how 8-oxo-dGTP uses charge modulation during insertion that can lead to a blocked DNA repair intermediate.


Assuntos
Citotoxinas/metabolismo , Dano ao DNA , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Nucleotídeos de Desoxiguanina/toxicidade , Mutagênese , Adenina/química , Adenina/metabolismo , Pareamento de Bases , Domínio Catalítico , Cristalografia por Raios X , Citosina/química , Citosina/metabolismo , Citotoxinas/química , Citotoxinas/toxicidade , DNA/biossíntese , DNA/química , Reparo do DNA , Replicação do DNA , Nucleotídeos de Desoxiguanina/química , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Conformação Molecular , Neoplasias/enzimologia , Neoplasias/genética , Oxirredução , Estresse Oxidativo , Eletricidade Estática , Especificidade por Substrato , Fatores de Tempo
9.
Nucleic Acids Res ; 47(6): 3197-3207, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30649431

RESUMO

4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, ß-C-Fapy•dGTP, with DNA polymerase ß. The crystallographic snapshots and kinetic data indicate that binding of ß-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions ß-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of ß-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase ß has evolved to hinder Fapy•dGTP insertion.


Assuntos
DNA Polimerase beta/química , Nucleotídeos de Desoxiguanina/química , Estresse Oxidativo/efeitos dos fármacos , Conformação Proteica , Domínio Catalítico/genética , Cristalografia por Raios X , Dano ao DNA/genética , DNA Polimerase beta/genética , Replicação do DNA/genética , Nucleotídeos de Desoxiguanina/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Humanos , Cinética , Mutagênese/efeitos dos fármacos , Pirofosfatases/química
10.
Proc Natl Acad Sci U S A ; 115(16): 4218-4222, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610342

RESUMO

Reactive oxygen species formed within the mammalian cell can produce 8-oxo-7,8-dihydroguanine (8-oxoG) in mRNA, which can cause base mispairing during gene expression. Here we found that administration of 8-oxoGTP in MTH1-knockdown cells results in increased 8-oxoG content in mRNA. Under this condition, an amber mutation of the reporter luciferase is suppressed. Using second-generation sequencing techniques, we found that U-to-G changes at preassigned sites of the luciferase transcript increased when 8-oxoGTP was supplied. In addition, an increased level of 8-oxoG content in RNA induced the accumulation of aggregable amyloid ß peptides in cells expressing amyloid precursor protein. Our findings indicate that 8-oxoG accumulation in mRNA can alter protein synthesis in mammalian cells. Further work is required to assess the significance of these findings under normal physiological conditions.


Assuntos
Guanina/análogos & derivados , Mutagênese/genética , Biossíntese de Proteínas/genética , Transcrição Gênica/genética , Peptídeos beta-Amiloides/genética , Anticódon/genética , Pareamento de Bases , Códon sem Sentido , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Técnicas de Silenciamento de Genes , Genes Reporter , Guanina/química , Células HeLa , Humanos , Luciferases/genética , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio
11.
Biochemistry ; 59(8): 955-963, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31999437

RESUMO

The human DNA polymerase (pol) ß cancer variant K289M has altered polymerase activity in vitro, and the structure of wild-type pol ß reveals that the K289 side chain contributes to a network of stabilizing interactions in a C-terminal region of the enzyme distal to the active site. Here, we probed the capacity of the K289M variant to tolerate strain introduced within the C-terminal region and active site. Strain was imposed by making use of a dGTP analogue containing a CF2 group substitution for the ß-γ bridging oxygen atom. The ternary complex structure of the K289M variant displays an alteration in the C-terminal region, whereas the structure of wild-type pol ß is not altered in the presence of the dGTP CF2 analogue. The alteration in the K289M variant impacts the active site, because the enzyme in the ternary complex fails to adopt the normal open to closed conformational change and assembly of the catalytically competent active site. These results reveal the importance of the K289-mediated stabilizing network in the C-terminal region of pol ß and suggest an explanation for why the K289M cancer variant is deficient in polymerase activity even though the position 289 side chain is distal to the active site.


Assuntos
DNA Polimerase beta/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , DNA Polimerase beta/química , DNA Polimerase beta/genética , Nucleotídeos de Desoxiguanina/química , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Domínios Proteicos
12.
J Biol Chem ; 294(18): 7194-7201, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30885943

RESUMO

DNA methylation is an epigenetic mark that regulates gene expression in mammals. One method of methylation removal is through ten-eleven translocation-catalyzed oxidation and the base excision repair pathway. The iterative oxidation of 5-methylcytosine catalyzed by ten-eleven translocation enzymes produces three oxidized forms of cytosine: 5-hydroxmethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The effect these modifications have on the efficiency and fidelity of the base excision repair pathway during the repair of opposing base damage, and in particular DNA polymerization, remains to be elucidated. Using kinetic assays, we show that the catalytic efficiency for the incorporation of dGTP catalyzed by human DNA polymerase ß is not affected when 5-methylcytosine, 5-hydroxmethylcytosine, and 5-formylcytosine are in the DNA template. In contrast, the catalytic efficiency of dGTP insertion decreases ∼20-fold when 5-carboxycytosine is in the templating position, as compared with unmodified cytosine. However, DNA polymerase fidelity is unaltered when these modifications are in the templating position. Structural analysis reveals that the methyl, hydroxymethyl, and formyl modifications are easily accommodated within the polymerase active site. However, to accommodate the carboxyl modification, the phosphate backbone on the templating nucleotide shifts ∼2.5 Å to avoid a potential steric/repulsive clash. This altered conformation is stabilized by lysine 280, which makes a direct interaction with the carboxyl modification and the phosphate backbone of the templating strand. This work provides the molecular basis for the accommodation of epigenetic base modifications in a polymerase active site and suggests that these modifications are not mutagenically copied during base excision repair.


Assuntos
5-Metilcitosina/biossíntese , DNA Polimerase beta/metabolismo , Replicação do DNA , 5-Metilcitosina/química , Catálise , DNA/metabolismo , Humanos , Cinética , Oxirredução
13.
Nucleic Acids Res ; 46(14): 7309-7322, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29917149

RESUMO

DNA polymerase ß (pol ß) plays a central role in the DNA base excision repair pathway and also serves as an important model polymerase. Dynamic characterization of pol ß from methyl-TROSY 13C-1H multiple quantum CPMG relaxation dispersion experiments of Ile and Met sidechains and previous backbone relaxation dispersion measurements, reveals transitions in µs-ms dynamics in response to highly variable substrates. Recognition of a 1-nt-gapped DNA substrate is accompanied by significant backbone and sidechain motion in the lyase domain and the DNA binding subdomain of the polymerase domain, that may help to facilitate binding of the apoenzyme to the segments of the DNA upstream and downstream from the gap. Backbone µs-ms motion largely disappears after formation of the pol ß-DNA complex, giving rise to an increase in uncoupled µs-ms sidechain motion throughout the enzyme. Formation of an abortive ternary complex using a non-hydrolyzable dNTP results in sidechain motions that fit to a single exchange process localized to the catalytic subdomain, suggesting that this motion may play a role in catalysis.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , DNA/química , Conformação Proteica , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálise , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Cinética , Modelos Moleculares , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ligação Proteica , Especificidade por Substrato , Fatores de Tempo
14.
Biochemistry ; 58(35): 3646-3655, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31407575

RESUMO

Deciphering factors modulating DNA repair in chromatin is of great interest because nucleosomal positioning influences mutation rates. H3K56 acetylation (Ac) is implicated in chromatin landscape regulation, impacting genomic stability, yet the effect of H3K56Ac on DNA base excision repair (BER) remains unclear. We determined whether H3K56Ac plays a role in regulating AP site incision by AP endonuclease 1 (APE1), an early step in BER. Our in vitro studies of acetylated, well-positioned nucleosome core particles (H3K56Ac-601-NCPs) demonstrate APE1 strand incision is enhanced compared with that of unacetylated WT-601-NCPs. The high-mobility group box 1 protein enhances APE1 activity in WT-601-NCPs, but this effect is not observed in H3K56Ac-601-NCPs. Therefore, our results suggest APE1 activity on NCPs can be modulated by H3K56Ac.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Acetilação , Animais , Sítios de Ligação/genética , Reparo do DNA/genética , Escherichia coli , Instabilidade Genômica , Histonas/química , Humanos , Lisina/metabolismo , Methanosarcina barkeri , Camundongos , Nucleossomos/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional/fisiologia , Sirtuínas/genética , Sirtuínas/metabolismo , Xenopus laevis
15.
Biochemistry ; 58(13): 1764-1773, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30839203

RESUMO

Deoxynucleotide misincorporation efficiencies can span a wide 104-fold range, from ∼10-2 to ∼10-6, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-ß,γ substrate analogues in which the pyrophosphate leaving group (p Ka4 = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p Ka4 values from 7.8 (CF2) to 12.3 [C(CH3)2]. Here, we have used a linear free energy relationship (LFER) analysis, in the form of a Brønsted plot of log( kpol) versus p Ka4, for Y-family error-prone pol η and X-family pols λ and ß to determine the extent to which different electrostatic active site environments alter kpol values. The apparent chemical rate constant ( kpol) is the rate-determining step for the three pols. The pols each exhibit a distinct catalytic signature that differs for formation of right (A·T) and wrong (G·T) incorporations observed as changes in slopes and displacements of the Brønsted lines, in relation to a reference LFER. Common to this signature among all three pols is a split linear pattern in which the analogues containing two halogens show kpol values that are systematically lower than would be predicted from their p Ka4 values measured in aqueous solution. We discuss how metal ions and active site amino acids are responsible for causing "effective" p Ka4 values that differ for dihalo and non-dihalo substrates as well as for individual R and S stereoisomers for CHF and CHCl.


Assuntos
DNA Polimerase beta/metabolismo , DNA Polimerase gama/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Pareamento de Bases , Domínio Catalítico , DNA Polimerase beta/química , DNA Polimerase gama/química , DNA Polimerase Dirigida por DNA/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Humanos , Cinética , Especificidade por Substrato , Termodinâmica
16.
Nat Chem Biol ; 13(10): 1074-1080, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28759020

RESUMO

DNA polymerases catalyze efficient and high-fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, that removes the DNA primer terminus and generates deoxynucleoside triphosphates. Because pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase ß and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that this reaction was limited by a nonchemical step. Use of a pyrophosphate analog, in which the bridging oxygen is replaced with an imido group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect, indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium favoring the reverse reaction. These results highlight the importance of the bridging atom between the ß- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.


Assuntos
DNA Polimerase beta/metabolismo , Termodinâmica , DNA Polimerase beta/química , Humanos , Fosfatos/química , Fosfatos/metabolismo
17.
Nucleic Acids Res ; 45(7): 3822-3832, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28119421

RESUMO

DNA polymerase (Pol) ß maintains genome fidelity by catalyzing DNA synthesis and removal of a reactive DNA repair intermediate during base excision repair (BER). Situated within the middle of the BER pathway, Pol ß must efficiently locate its substrates before damage is exacerbated. The mechanisms of damage search and location by Pol ß are largely unknown, but are critical for understanding the fundamental features of the BER pathway. We developed a processive search assay to determine if Pol ß has evolved a mechanism for efficient DNA damage location. These assays revealed that Pol ß scans DNA using a processive hopping mechanism and has a mean search footprint of ∼24 bp at predicted physiological ionic strength. Lysines within the lyase domain are required for processive searching, revealing a novel function for the lyase domain of Pol ß. Application of our processive search assay into nucleosome core particles revealed that Pol ß is not processive in the context of a nucleosome, and its single-turnover activity is reduced ∼500-fold, as compared to free DNA. These data suggest that the repair footprint of Pol ß mainly resides within accessible regions of the genome and that these regions can be scanned for damage by Pol ß.


Assuntos
Dano ao DNA , DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Liases/química , Modelos Moleculares , Nucleossomos/metabolismo , Concentração Osmolar
18.
Nucleic Acids Res ; 45(15): 8901-8915, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911106

RESUMO

Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol ß catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol ß activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol ß is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step.


Assuntos
DNA Polimerase beta/química , Reparo do DNA , Replicação do DNA , DNA/química , Nucleossomos/metabolismo , Ribosemonofosfatos/química , Animais , Sítios de Ligação , Clonagem Molecular , DNA/genética , DNA/metabolismo , Dano ao DNA , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Nucleossomos/ultraestrutura , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosemonofosfatos/metabolismo , Xenopus laevis/metabolismo
19.
Nucleic Acids Res ; 45(5): 2736-2745, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28108654

RESUMO

DNA polymerases catalyze a metal-dependent nucleotidyl transferase reaction during extension of a DNA strand using the complementary strand as a template. The reaction has long been considered to require two magnesium ions. Recently, a third active site magnesium ion was identified in some DNA polymerase product crystallographic structures, but its role is not known. Using quantum mechanical/ molecular mechanical calculations of polymerase ß, we find that a third magnesium ion positioned near the newly identified product metal site does not alter the activation barrier for the chemical reaction indicating that it does not have a role in the forward reaction. This is consistent with time-lapse crystallographic structures following insertion of Sp-dCTPαS. Although sulfur substitution deters product metal binding, this has only a minimal effect on the rate of the forward reaction. Surprisingly, monovalent sodium or ammonium ions, positioned in the product metal site, lowered the activation barrier. These calculations highlight the impact that an active site water network can have on the energetics of the forward reaction and how metals or enzyme side chains may interact with the network to modulate the reaction barrier. These results also are discussed in the context of earlier findings indicating that magnesium at the product metal position blocks the reverse pyrophosphorolysis reaction.


Assuntos
DNA Polimerase beta/química , Magnésio/química , Biocatálise , Domínio Catalítico , DNA Polimerase beta/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Sódio/química , Água/química
20.
Nucleic Acids Res ; 45(4): 1958-1970, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27956495

RESUMO

DNA polymerase ß (pol ß) requires nuclear localization to fulfil its DNA repair function. Although its small size has been interpreted to imply the absence of a need for active nuclear import, sequence and structural analysis suggests that a monopartite nuclear localization signal (NLS) may reside in the N-terminal lyase domain. Binding of this domain to Importin α1 (Impα1) was confirmed by gel filtration and NMR studies. Affinity was quantified by fluorescence polarization analysis of a fluorescein-tagged peptide corresponding to pol ß residues 2-13. These studies indicate high affinity binding, characterized by a low micromolar Kd, that is selective for the murine Importin α1 (mImpα1) minor site, with the Kd strengthening to ∼140 nM for the full lyase domain (residues 2-87). A further reduction in Kd obtains in binding studies with human Importin α5 (hImpα5), which in some cases has been demonstrated to bind small domains connected to the NLS. The role of this NLS was confirmed by fluorescent imaging of wild-type and NLS-mutated pol ß(R4S,K5S) in mouse embryonic fibroblasts lacking endogenous pol ß. Together these data demonstrate that pol ß contains a specific NLS sequence in the N-terminal lyase domain that promotes transport of the protein independent of its interaction partners. Active nuclear uptake allows development of a nuclear/cytosolic concentration gradient against a background of passive diffusion.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/genética , Sinais de Localização Nuclear/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte , Linhagem Celular , DNA Polimerase beta/metabolismo , Humanos , Espaço Intracelular , Espectroscopia de Ressonância Magnética , Camundongos , Mutação , Sinais de Localização Nuclear/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , alfa Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa