Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
J Am Chem Soc ; 146(1): 1185-1195, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38148611

RESUMO

Patients treated with Pt-based anticancer drugs (PtII) often experience severe side effects and are susceptible to cancer recurrence due to the limited bioavailability of PtII and tumor-induced immunosuppression. The exposure of phosphatidylserine on the cell's outer surface induced by PtII results in profound immunosuppression through the binding of phosphatidylserine to its receptors on immune cells. Here, we report a novel approach for enhanced cancer chemoimmunotherapy, where a novel nuclear-targeting lipid PtIV prodrug amphiphile was used to deliver a small interfering RNA (siXkr8) to simultaneously amplify Pt-DNA adducts and reduce the level of exposure of phosphatidylserine. This drug delivery vehicle is engineered by integrating the PtIV prodrug with self-assembly performance and siXkr8 into a lipid nanoparticle, which shows tumor accumulation, cancer cell nucleus targeting, and activatable in a reduced microenvironment. It is demonstrated that nuclear-targeting lipid PtIV prodrug increases the DNA cross-linking, resulting in increased Pt-DNA adduct formation. The synergistic effects of the PtIV prodrug and siXkr8 contribute to the improvement of the tumor immune microenvironment. Consequently, the increased Pt-DNA adducts and immunogenicity effectively inhibit primary tumor growth and prevent tumor recurrence. These results underscore the potential of utilizing the nuclear-targeting lipid PtIV prodrug amphiphile to enhance Pt-DNA adduct formation and employing siXkr8 to alleviate immunosuppression during chemotherapy.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Adutos de DNA , Fosfatidilserinas , RNA Interferente Pequeno , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , RNA de Cadeia Dupla , Linhagem Celular Tumoral , Cisplatino , Microambiente Tumoral
2.
Biochem Biophys Res Commun ; 696: 149483, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219484

RESUMO

Highly cytotoxic maytansine derivatives are widely used in targeted tumor delivery. Structure-activity studies published earlier suggested the C9 carbinol to be a key element necessary to retain the potency. However, in 1984 a patent was published by Takeda in which the synthesis of 9-thioansamitocyn (AP3SH) was described and its activity in xenograft models was shown. In this article we summarize the results of an extended study of the anti-tumor properties of AP3SH. Like other maytansinoids, it induces apoptosis and arrests the cell cycle in the G2/M phase. It is metabolized in liver microsomes predominately by C3A4 isoform and doesn't inhibit any CYP isoforms except CYP3A4 (midazolam, IC50 7.84 µM). No hERG inhibition, CYP induction or mutagenicity in Ames tests were observed. AP3SH demonstrates high antiproliferative activity against 25 tumor cell lines and tumor growth inhibition in U937 xenograft model. Application of AP3SH as a cytotoxic payload in drug delivery system was demonstrated by us earlier.


Assuntos
Antineoplásicos , Maitansina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Ciclo Celular , Divisão Celular
3.
Small ; 19(49): e2206688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606911

RESUMO

Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Nanopartículas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Albuminas , Ferro/farmacologia , Linhagem Celular Tumoral
4.
Angew Chem Int Ed Engl ; 62(21): e202300662, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36807420

RESUMO

Cancer is one of the deadliest diseases worldwide. Recent statistics have shown that metastases and tumor relapse are the leading causes of cancer-associated deaths. While traditional treatments are able to efficiently remove the primary tumor, secondary tumors remain poorly accessible. Capitalizing on this there is an urgent need for novel treatment modalities. Among the most promising approaches, increasing research interest has been devoted to immunogenic cell death inducing agents that are able to trigger localized cell death of the cancer cells as well as induce an immune response inside the whole organism. Preliminary studies have shown that immunogenic cell death inducing compounds could be able to overcome metastatic and relapsing tumors. Herein, the application of metal complexes as immunogenic cell death inducing compounds is systematically reviewed.


Assuntos
Complexos de Coordenação , Neoplasias , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Morte Celular , Imunoterapia
5.
Angew Chem Int Ed Engl ; 62(22): e202301074, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36961095

RESUMO

The development of PtIV prodrugs that are reduced into the therapeutically active PtII species within the tumor microenvironment has received much research interest. In order to provide spatial and temporal control over the treatment, there is a high demand for the development of compounds that could be selectively activated upon irradiation. Despite recent progress, the majority of PtIV complexes are excited with ultraviolet or blue light, limiting the use of such compounds to superficial application. To overcome this limitation, herein, the first example of PtIV prodrug nanoparticles that could be reduced with deeply penetrating ultrasound radiation is reported, enabling the treatment of deep-seated or large tumors. The nanoparticles were found to selectively accumulate inside a mouse colon carcinoma tumor upon intravenous injection and were able to eradicate the tumor upon exposure to ultrasound radiation.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Platina/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
6.
J Nanobiotechnology ; 20(1): 329, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842642

RESUMO

Photodynamic therapy (PDT) has emerged as an attractive therapeutic approach which can elicit immunogenic cell death (ICD). However, current ICD inducers are still very limited as the representative ICD induces of photosensitizers can only evoke insufficient ICD to achieve unsatisfactory cancer immunotherapy. Herein, we demonstrated the use of a triple action cationic porphyrin-cisplatin conjugate (Pt-1) for drug delivery by a reactive oxygen species (ROS) sensitive polymer as nanoparticles (NP@Pt-1) for combined chemotherapy, PDT and immunotherapy. This unique triple action Pt-1 contains both chemotherapeutic Pt drugs and Porphyrin as a photosensitizer to generate ROS for PDT. Moreover, the ROS generated by Pt-1 can on the one hand degrade polymer carriers to release Pt-1 for chemotherapy and PDT. On the other hand, the ROS generated by Pt-1 subsequently triggered the ICD cascade for immunotherapy. Taken together, we demonstrated that NP@Pt-1 were the most effective and worked in a triple way. This study could provide us with new insight into the development of nanomedicine for chemotherapy, PDT as well as cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Cisplatino/farmacologia , Morte Celular Imunogênica , Imunoterapia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
J Nanobiotechnology ; 20(1): 258, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659243

RESUMO

BACKGROUND: Cisplatin, the alkylating agent of platinum(II) (Pt(II)), is the most common antitumor drug in clinic; however, it has many side effects, therefore it is higly desired to develop low toxicity platinum(IV) (Pt(IV)) drugs. Multi-omics analysis, as a powerful tool, has been frequently employed for the mechanism study of a certain therapy at the molecular level, which might be helpful for elucidating the mechanism of platinum drugs and facilitating their clinical application. METHODS: Strating form cisplatin, a hydrophobic Pt(IV) prodrug (CisPt(IV)) with two hydrophobic aliphatic chains was synthesized, and further encapsulated with a drug carrier, human serum albumin (HSA), to form nanoparticles, namely AbPlatin(IV). The anticancer effect of AbPlatin(IV) was investigated in vitro and in vivo. Moreover, transcriptomics, metabolomics and lipidomics were performed to explore the mechanism of AbPlatin(IV). RESULTS: Compared with cisplatin, Abplatin(IV) exhibited better tumor-targeting effect and greater tumor inhibition rate. Lipidomics study showed that Abplatin(IV) might induce the changes of BEL-7404 cell membrane, and cause the disorder of glycerophospholipids and sphingolipids. In addition, transcriptomics and metabolomics study showed that Abplatin(IV) significantly disturbed the purine metabolism pathway. CONCLUSIONS: This research highlighted the development of Abplatin(IV) and the use of multi-omics for the mechanism elucidation of prodrug, which is the key to the clinical translation of prodrug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Pró-Fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Platina/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
8.
Nano Lett ; 21(8): 3680-3689, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33596656

RESUMO

Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.


Assuntos
Endossomos , Polímeros , Animais , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/genética
9.
Angew Chem Int Ed Engl ; 61(20): e202201486, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212437

RESUMO

The development of PtIV prodrugs which are selectively reduced within cancerous cells into their PtII therapeutically active species has received increasing attention within the last decade. Despite recent research progress, the majority of investigated compounds are excited using ultraviolet or blue light. As the light penetration depth is low at these wavelengths, the treatment of deep-seated or large tumors is limited. To overcome this limitation, herein, the example of PtIV -functionalized nanoparticles that could be excited within the NIR region at 808 nm is reported. The polymer backbone which can self-assemble into nanoparticles was functionalized with PtIV complexes for chemotherapy, photosensitizers for photodynamic immunotherapy, and nucleus/cancer-targeting peptides. Upon irradiation, the PtIV center is reduced to PtII and the axially coordinated ligands are released, presenting a multimodal treatment. While selectively accumulating in tumorous tissue, the nanoparticles demonstrated the ability to eradicate a triple-negative breast cancer tumor inside a mouse model.


Assuntos
Nanopartículas , Fotoquimioterapia , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pró-Fármacos/química
10.
Angew Chem Int Ed Engl ; 61(31): e202203546, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642869

RESUMO

Recent progress in studying copper-dependent targets and pathways in the context of tumor treatment has provided new insights into therapeutic strategies of leveraging copper-dependent disease vulnerabilities and pharmacological manipulation of intratumor copper transportation to improve chemotherapy. Here, we developed reactive oxygen species (ROS)-sensitive nanoparticles loaded with copper chaperone inhibitor DC_AC50 and cisplatin(IV) prodrug. The released DC_AC50 can promote a remarkable accumulation of intracellular cisplatin and copper through inhibition of the Atox1-ATPase pathways, thereby enhancing the chemotherapeutic effect of cisplatin and inducing significant ROS generation. Excessive ROS then elicits intense endoplasmic reticulin (ER) stress which facilitates the immunogenic cell death (ICD) spurring a sustained immune response. Our study suggests that nanoparticle-mediated copper chaperone inhibition via DC_AC50 can restore the immunogenicity of tumor cells for enhanced chemotherapy and cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Cisplatino/metabolismo , Cisplatino/farmacologia , Cobre/metabolismo , Chaperonas Moleculares , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
11.
Soft Matter ; 17(7): 1796-1801, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399612

RESUMO

Core/shell PVSt-b-PS@Fe3O4 composite nanoparticles (NPs) are achieved by grafting living cationic block copolymer chains onto the surface of amine-capped Fe3O4 NPs via fast termination. The number of chains grafted can be tuned via the molecular weight of PVSt-b-PS. Upon grafting PEG onto the PVSt block via a click reaction, the resulting (PVSt-g-PEG)-b-PS@Fe3O4 composite NPs become highly dispersible in water. A composite nanoparticle with ten chains is selected as a homogeneous NP to demonstrate the dynamic stepwise organization of the NP as oil is fed into the aqueous dispersion. The individual NPs with captured oil are further aggregated, but remain stable with increasing oil content. Eventually, a Pickering emulsion forms in which the aggregates are anchored at the emulsion interface. This dynamic behavior study helps to provide an understanding of the mechanism by which NPs stabilize Pickering emulsions.

12.
Angew Chem Int Ed Engl ; 58(40): 14224-14228, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389144

RESUMO

The targeted delivery of chemotherapeutic drugs is a major challenge in the clinical treatment of cancer. Herein, we constructed a multifunctional DNA nanoplatform as a versatile carrier of the highly potent platinum-based DNA intercalator, 56MESS. In our rational design, 56MESS was efficiently loaded into the double-bundle DNA tetrahedron through intercalation with the DNA duplex. With the integration of a nanobody that both targets and blocks epidermal growth factor receptor (EGFR), the DNA nanocarriers exhibit excellent selectivity for cells with elevated EGFR expression (a common biomarker related to tumor formation) and combined tumor therapy without obvious systemic toxicity. This DNA-based platinum-drug delivery system provides a promising strategy for the treatment of tumors.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , DNA/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química
13.
Small ; 14(42): e1803061, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30238691

RESUMO

Nucleic acid-based therapy specially needs a safe and robust delivery vector. Herein, a novel fluorinated acid-labile branched hydroxyl-rich polycation (ARP-F) is proposed for the flexible and effective delivery nanovector of different plasmids including reporter genes and the Cas9 plasmid. Acid-responsive polycation (ARP) with plentiful ortho ester linkages and hydroxyl groups is first synthesized via a facile one-pot ring-opening polymerization, followed by decoration of fluorinated alkyl chains onto ARP to achieve ARP-F. ARP-F possesses good pH-responsive degradability, biocompatibility, and its preliminary transfection ability evaluated by reporter plasmids pRL-CMV (encoding Renilla luciferase) and pEGFP-N1 (encoding enhanced green fluorescent protein) is also excellent. CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9) technology is a potent genome-editing tool. The subsequent delivery of pCas9-surv (one typical all-in-one Cas9 plasmid) mediated by ARP-F exhibits impressive in vitro and in vivo tumor inhibition performances. In addition, the combination of ARP-F/pCas9-surv with temozolomide could further enhance tumor inhibition activities by increasing the sensitivity of cancer cells to anticancer drugs. Such high-performance polycation would provide a very promising means to produce efficient delivery nanovectors of versatile plasmids.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Vetores Genéticos/genética , Plasmídeos/genética , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Humanos
14.
Mol Ther ; 25(1): 92-101, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28129133

RESUMO

The high vulnerability of mRNA necessitates the manufacture of delivery vehicles to afford adequate protection in the biological milieu. Here, mRNA was complexed with a mixture of cRGD-poly(ethylene glycol) (PEG)-polylysine (PLys) (thiol) and poly(N-isopropylacrylamide) (PNIPAM)-PLys(thiol). The ionic complex core consisting of opposite-charged PLys and mRNA was crosslinked though redox-responsive disulfide linkage, thereby avoiding structural disassembly for exposure of mRNA to harsh biological environments. Furthermore, PNIPAM contributed to prolonged survival in systemic circulation by presenting a spatial barrier in impeding accessibility of nucleases, e.g., RNase, due to the thermo-responsive hydrophilic-hydrophobic transition behavior upon incubation at physiological temperature enabling translocation of PNIPAM from shell to intermediate barrier. Ultimately, the cRGD ligand attached to the formulation demonstrated improved tumor accumulation and potent gene expression, as manifested by virtue of facilitated cellular uptake and intracellular trafficking. These results indicate promise for the utility of mRNA as a therapeutic tool for disease treatment.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Polímeros , RNA Mensageiro/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Composição de Medicamentos , Humanos , Ligantes , Nanopartículas/química , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Polilisina/química , Polímeros/síntese química , Polímeros/química , RNA Mensageiro/química
15.
Nano Lett ; 17(7): 4526-4533, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28644032

RESUMO

Targeted delivery of chemotherapeutic drugs to the desired lesion sites is the main objective in malignancy treatment, especially in highly metastatic malignancies. However, extensive studies around the world on traditional targeting strategies of recognizing either overexpressed receptors or microenvironments in tumors show great limitations, owing to the off-target effect and tumor homogeneity. Integration of both receptor-mediated targeting (RMT) and environment-mediated targeting (EMT) enhances the tumor accumulation and subsequent cell uptake at the same time, which may avoid these limitations. Herein, a dual targeting nanogel of PMNG engineered with both phenylboronic acid (PBA) and morpholine (MP) was reported for not only RMT via specific recognition of sialyl (SA) epitopes but also EMT toward extracellular acidity. Further engineering the nanoparticles via loading doxorubicin (DOX) brought a novel dual targeting system, that is, PMNG/DOX. PMNG/DOX demonstrated a greater targeting effect to both primary and metastatic B16F10 melanoma than the single PBA-modified nanogel (PNG) with only RMT in vitro and in vivo. Moreover, PMNG/DOX was also proved to be highly potent on inhibiting primary tumor growth as well as tumor metastasis on B16F10 melanoma-grafted mouse model. The results demonstrated the dual targeting design as a translational approach for drug delivery to highly metastatic tumor.


Assuntos
Antineoplásicos/administração & dosagem , Nanopartículas/química , Microambiente Tumoral/fisiologia , Animais , Antineoplásicos/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Géis , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Morfolinas/química , Metástase Neoplásica , Tamanho da Partícula , Peptídeos/química , Propriedades de Superfície , Distribuição Tecidual
16.
Nano Lett ; 17(2): 928-937, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28139118

RESUMO

Reactive oxygen species (ROS) plays a key role in therapeutic effects as well as side effects of platinum drugs. Cisplatin mediates activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), which triggers oxygen (O2) to superoxide radical (O2•-) and its downstream H2O2. Through the Fenton's reaction, H2O2 could be catalyzed by Fe2+/Fe3+ to the toxic hydroxyl radicals (•OH), which cause oxidative damages to lipids, proteins, and DNA. By taking the full advantage of Fenton's chemistry, we herein demonstrated tumor site-specific conversion of ROS generation induced by released cisplatin and Fe2+/Fe3+ from iron-oxide nanocarriers with cisplatin(IV) prodrugs for enhanced anticancer activity but minimized systemic toxicity.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Compostos Férricos/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Cisplatino/química , Cisplatino/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Campos Eletromagnéticos , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Camundongos Endogâmicos BALB C , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
17.
J Am Chem Soc ; 139(8): 3033-3044, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28166401

RESUMO

RNAi approaches have been widely combined with platinum-based anticancer agents to elucidate cellular responses and to target gene products that mediate acquired resistance. Recent work has demonstrated that platination of siRNA prior to transfection may negatively influence RNAi efficiency based on the position and sequence of its guanosine nucleosides. Here, we used detailed spectroscopic characterization to demonstrate rapid formation of Pt-guanosine adducts within 30 min after coincubation of oxaliplatin [OxaPt(II)] or cisplatin [CisPt(II)] with either guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA. After 3 h of exposure to these platinum(II) agents, >50% of BCL-2 siRNA transcripts were platinated and unable to effectively suppress mRNA levels. Platinum(IV) analogues [OxaPt(IV) or CisPt(IV)] did not form Pt-siRNA adducts but did display decreased in vitro uptake and reduced potency. To overcome these challenges, we utilized biodegradable methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(l-lysine) (mPEG-b-PCL-b-PLL) to generate self-assembled micelles that covalently conjugated OxaPt(IV) and/or electrostatically complexed siRNA. We then compared multiple strategies by which to combine BCL-2 siRNA with either OxaPt(II) or OxaPt(IV). Overall, we determined that the concentrations of siRNA (nM) and platinum(II)-based anticancer agents (µM) that are typically used for in vitro experiments led to rapid Pt-siRNA adduct formation and ineffective RNAi. Coincorporation of BCL-2 siRNA and platinum(IV) analogues in a single micelle enabled maximal suppression of BCL-2 mRNA levels (to <10% of baseline), augmented the intracellular levels of platinum (by ∼4×) and the numbers of resultant Pt-DNA adducts (by >5×), increased the cellular fractions that underwent apoptosis (by ∼4×), and enhanced the in vitro antiproliferative activity of the corresponding platinum(II) agent (by 10-100×, depending on the cancer cell line). When combining RNAi and platinum-based anticancer agents, this generalizable strategy may be adopted to maximize synergy during screening or for therapeutic delivery.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Interferência de RNA , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Micelas , Estrutura Molecular , Compostos Organoplatínicos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Anticancer Drugs ; 26(7): 698-705, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25811961

RESUMO

A hybrid drug dichloroacetate-platinum(II) [DCA-Pt(II)] was found to overcome cisplatin drug resistance of ovarian cancer through a dual targeting mode, which is different from the mode of action of the present platinum (Pt) drugs used in clinics. DCA-Pt(II) exhibited remarkable cytotoxicity against both cisplatin-sensitive (A2780) and cisplatin-resistant (A2780DDP) ovarian cancer cells. The Pt and Pt-DNA adduct content test showed that there was less Pt cellular uptake and fewer Pt-DNA adducts were present after DCA-Pt(II) treatment compared with treatment with cisplatin, carboplatin, and some other drugs. In the study, the effects of DCA-Pt(II) on the cell cycle and apoptosis were also investigated, which showed that DCA-Pt(II) induced G2/M phase arrest and mitochondria-mediated apoptosis in both sensitive and resistant cells lines. Interestingly, DCA-Pt(II) had much greater effects on mitochondria in A2780DDP cell lines than in A2780 cell lines.


Assuntos
Antineoplásicos/farmacologia , Cloroacetatos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Adutos de DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Neoplasias Ovarianas
19.
Luminescence ; 30(5): 677-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25352448

RESUMO

Seven novel pyrazolone derivatives were synthesized and characterized by (1) H NMR and (13) C NMR spectra, mass spectra, infrared spectra and elemental analysis. Their terbium complexes were prepared and characterized by elemental analysis, EDTA titrimetric analysis, UV/vis spectra, infrared spectra and molar conductivity, as well as thermal analysis. The fluorescence properties and fluorescence quantum yields of the complexes were investigated at room temperature. The results indicated that pyrazolone derivatives had good energy-transfer efficiency for the terbium ion. All the terbium complexes emitted green fluorescence characteristic of terbium ions, possessed strong fluorescence intensity, and showed relatively high fluorescence quantum yields. Cyclic voltammograms of the terbium complexes were studied and the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) energy levels of these complexes were estimated.


Assuntos
Substâncias Luminescentes/química , Pirazolonas/química , Térbio/química , Técnicas Eletroquímicas , Luminescência , Substâncias Luminescentes/síntese química , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
20.
Adv Mater ; : e2402452, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691849

RESUMO

The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa