Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 148(13): 1023-1034, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37548012

RESUMO

BACKGROUND: The major cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) has emerged as a key mediator of inflammation that underlies cardiovascular disease. On interaction with double-stranded DNA, cGAS generates the second messenger 2',3'-cyclic GMP-AMP (cGAMP) that directly binds to and activates the stimulator of interferon genes, which in turn leads to enhanced expression of genes encoding interferons and proinflammatory cytokines. Here, we show that cGAMP generated by cGAS also directly activates PKGI (cGMP-dependent protein kinase 1), a mechanism that underlies crosstalk between inflammation and blood pressure regulation. METHODS: The ability of cGAS and cGAMP to activate PKGI was assessed using molecular, cellular, and biochemical analyses, and in myography experiments, as well. The release of cGAMP from the endothelium was measured using an ELISA, and its uptake into the vascular smooth muscle was assessed using molecular and biochemical approaches, including the identification and targeting of specific cGAMP transporters. The blood pressure of wild-type and cGAS-/- mice was assessed using implanted telemetry probes. cGAS was activated by in vivo transfection with G3-YSD or mice were made septic by administration of lipopolysaccharide. RESULTS: The detection of cytosolic DNA by cGAS within the vascular endothelium leads to formation of cGAMP that was found to be actively extruded by MRP1 (multidrug resistance protein 1). Once exported, this cGAMP is then imported into neighboring vascular smooth muscle cells through the volume-regulated anion channel, where it can directly activate PKGI. The activation of PKGI by cGAMP mediates vasorelaxation that is dependent on the activity of MRP1 and volume-regulated anion channel, but independent of the canonical nitric oxide pathway. This mechanism of PKGI activation mediates lowering of blood pressure and contributes to hypotension and tissue hypoperfusion during sepsis. CONCLUSIONS: The activation of PKGI by cGAMP enables the coupling of blood pressure to cytosolic DNA sensing by cGAS, which plays a key role during sepsis by mediating hypotension and tissue hypoperfusion.


Assuntos
DNA , Hipotensão , Animais , Camundongos , Pressão Sanguínea , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação
2.
Curr Issues Mol Biol ; 46(3): 2444-2455, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534770

RESUMO

Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.

3.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732081

RESUMO

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Assuntos
Plaquetas , Flavonoides , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apigenina/farmacologia , Quercetina/farmacologia , Luteolina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quempferóis/farmacologia , Trombina/metabolismo , Flavanonas
5.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298349

RESUMO

Phosphodiesterase-5 inhibitors (PDE5i) are under investigation for repurposing for colon cancer prevention. A drawback to conventional PDE5i are their side-effects and drug-drug interactions. We designed an analog of the prototypical PDE5i sildenafil by replacing the methyl group on the piperazine ring with malonic acid to reduce lipophilicity, and measured its entry into the circulation and effects on colon epithelium. This modification did not affect pharmacology as malonyl-sildenafil had a similar IC50 to sildenafil but exhibited an almost 20-fold reduced EC50 for increasing cellular cGMP. Using an LC-MS/MS approach, malonyl-sildenafil was negligible in mouse plasma after oral administration but was detected at high levels in the feces. No bioactive metabolites of malonyl-sildenafil were detected in the circulation by measuring interactions with isosorbide mononitrate. The treatment of mice with malonyl-sildenafil in the drinking water resulted in a suppression of proliferation in the colon epithelium that is consistent with results previously published for mice treated with PDE5i. A carboxylic-acid-containing analog of sildenafil prohibits the systemic delivery of the compound but maintains sufficient penetration into the colon epithelium to suppress proliferation. This highlights a novel approach to generating a first-in-class drug for colon cancer chemoprevention.


Assuntos
Neoplasias do Colo , Inibidores da Fosfodiesterase 5 , Camundongos , Animais , Inibidores da Fosfodiesterase 5/farmacologia , Citrato de Sildenafila/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Proliferação de Células , GMP Cíclico/metabolismo
6.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629047

RESUMO

Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and ß-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Coração , Miocárdio , Antagonistas de Receptores de Angiotensina , Bloqueadores dos Canais de Cálcio , AMP Cíclico , GMP Cíclico , Vasodilatadores
7.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239899

RESUMO

The natriuretic peptide system (NPS) and renin-angiotensin-aldosterone system (RAAS) function oppositely at multiple levels. While it has long been suspected that angiotensin II (ANGII) may directly suppress NPS activity, no clear evidence to date supports this notion. This study was designed to systematically investigate ANGII-NPS interaction in humans, in vivo, and in vitro. Circulating atrial, b-type, and c-type natriuretic peptides (ANP, BNP, CNP), cyclic guanosine monophosphate (cGMP), and ANGII were simultaneously investigated in 128 human subjects. Prompted hypothesis was validated in vivo to determine the influence of ANGII on ANP actions. The underlying mechanisms were further explored via in vitro approaches. In humans, ANGII demonstrated an inverse relationship with ANP, BNP, and cGMP. In regression models predicting cGMP, adding ANGII levels and the interaction term between ANGII and natriuretic peptides increased the predictive accuracy of the base models constructed with either ANP or BNP, but not CNP. Importantly, stratified correlation analysis further revealed a positive association between cGMP and ANP or BNP only in subjects with low, but not high, ANGII levels. In rats, co-infusion of ANGII even at a physiological dose attenuated cGMP generation mediated by ANP infusion. In vitro, we found the suppressive effect of ANGII on ANP-stimulated cGMP requires the presence of ANGII type-1 (AT1) receptor and mechanistically involves protein kinase C (PKC), as this suppression can be substantially rescued by either valsartan (AT1 blocker) or Go6983 (PKC inhibitor). Using surface plasmon resonance (SPR), we showed ANGII has low binding affinity to the guanylyl cyclase A (GC-A) receptor compared to ANP or BNP. Our study reveals ANGII is a natural suppressor for the cGMP-generating action of GC-A via AT1/PKC dependent manner and highlights the importance of dual-targeting RAAS and NPS in maximizing beneficial properties of natriuretic peptides in cardiovascular protection.


Assuntos
Angiotensina II , Guanilato Ciclase , Humanos , Ratos , Animais , Guanilato Ciclase/metabolismo , Angiotensina II/farmacologia , Fator Natriurético Atrial/farmacologia , Fator Natriurético Atrial/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Peptídeo Natriurético Encefálico , GMP Cíclico/metabolismo , Peptídeos Natriuréticos
8.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239919

RESUMO

Interleukin-1 receptor-associated kinase 3 (IRAK3) modulates the magnitude of cellular responses to ligands perceived by interleukin-1 receptors (IL-1Rs) and Toll-like receptors (TLRs), leading to decreases in pro-inflammatory cytokines and suppressed inflammation. The molecular mechanism of IRAK3's action remains unknown. IRAK3 functions as a guanylate cyclase, and its cGMP product suppresses lipopolysaccharide (LPS)-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activity. To understand the implications of this phenomenon, we expanded the structure-function analyses of IRAK3 through site-directed mutagenesis of amino acids known or predicted to impact different activities of IRAK3. We verified the capacity of the mutated IRAK3 variants to generate cGMP in vitro and revealed residues in and in the vicinity of its GC catalytic center that impact the LPS-induced NFκB activity in immortalized cell lines in the absence or presence of an exogenous membrane-permeable cGMP analog. Mutant IRAK3 variants with reduced cGMP generating capacity and differential regulation of NFκB activity influence subcellular localization of IRAK3 in HEK293T cells and fail to rescue IRAK3 function in IRAK3 knock-out THP-1 monocytes stimulated with LPS unless the cGMP analog is present. Together, our results shed new light on the mechanism by which IRAK3 and its enzymatic product control the downstream signaling, affecting inflammatory responses in immortalized cell lines.


Assuntos
Guanilato Ciclase , Quinases Associadas a Receptores de Interleucina-1 , Humanos , Guanilato Ciclase/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Lipopolissacarídeos/farmacologia , Células HEK293 , Mutação , NF-kappa B/genética
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(7): 1086-1097, 2023 Jul 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37724412

RESUMO

Cardiometabolic disease is a common clinical syndrome with exact causal relationship between the aberrant of glucose/lipid metabolism and cardiovascular disfunction, but its pathogenesis is unclear. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway regulates the activation of innate immunity by sensing intracellular double stranded DNA. Metabolic risk factors drive the activation of cGAS-STING pathway through mitochondrial DNA, nuclear DNA and endoplasmic reticulum stress. In addition, the activation of the cGAS-STING pathway triggers chronic sterile inflammation, excessive activation of autophagy, senescence and apoptosis in related cells of cardiovascular system. These changes induced by cGAS-STING pathway might be implicated in the onset and deterioration of cardiometabolic disease. Therefore, the targeting intervention of cGAS-STING signaling pathway may emerge as a novel treatment for cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Transdução de Sinais , Humanos , Apoptose , Autofagia , Glucose , Inflamação
10.
Curr Issues Mol Biol ; 44(12): 6247-6256, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36547087

RESUMO

Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.

11.
Heart Fail Rev ; 27(4): 1165-1171, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34291399

RESUMO

The significant morbidity and mortality associated with heart failure with reduced (HFrEF) or preserved ejection fraction (HFpEF) justify the search for novel therapeutic agents. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway plays an important role in the regulation of cardiovascular function. This pathway is disrupted in HF resulting in decreased protection against myocardial injury. The sGC activator cinaciguat increases cGMP levels by direct, NO-independent activation of sGC, and may be particularly effective in conditions of increased oxidative stress and endothelial dysfunction, and then reduced NO levels, but this comes at the expense of a greater risk of hypotension. Conversely, sGC stimulators (riociguat and vericiguat) enhance sGC sensitivity to endogenous NO, and then exert a more physiological action. The phase 3 VICTORIA trial found that vericiguat is safe and effective in patients with HFrEF and recent HF decompensation. Therefore, adding vericiguat may be considered in individual patients with HFrEF, particularly those at higher risk of HF hospitalization; the efficacy of the sacubitril/valsartan-vericiguat combination in HFrEF is currently unknown.


Assuntos
Insuficiência Cardíaca , Compostos Heterocíclicos com 2 Anéis , Aminobutiratos , Compostos de Bifenilo , GMP Cíclico/metabolismo , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Óxido Nítrico/metabolismo , Pirimidinas , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/uso terapêutico , Volume Sistólico/fisiologia
12.
J Inherit Metab Dis ; 45(3): 621-634, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35192730

RESUMO

6R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for aromatic L-amino acid hydroxylases, including tyrosine hydroxylase (TH), alkylglycerol monooxygenase, and three types of nitric oxide (NO) synthases (NOS). Sepiapterin reductase (SPR) catalyzes the third step of BH4 biosynthesis. SPR gene-disrupted (Spr-/- ) mice exhibit a dystonic posture, low body weight, hyperphenylalaninemia, and unstable hypertension with endothelial dysfunction. In this study, we found that Spr-/- mice suffered from a high incidence of severe priapism. Their erections persisted for months. The biopterin, BH4, and norepinephrine contents, and TH protein levels in the penile tissue of Spr-/- mice without and with priapism were significantly reduced compared to those of Spr+/+ mice. In contrast, their neural NOS (nNOS) protein levels were increased, and the cyclic guanosine monophosphate (cGMP) levels were remarkably elevated in the penises of Spr-/- mice with priapism. The symptoms were relieved by repeated administration of BH4. The biopterin, BH4, and norepinephrine contents were increased in penile homogenates from BH4-supplemented Spr-/- mice, and the TH protein levels tended to increase, and their nitrite plus nitrate levels were significantly lower than those of vehicle-treated Spr-/- mice and were approximately the same as vehicle- and BH4-supplemented Spr+/+ mice. Thus, we deduced that the priapism of Spr-/- mice is primarily caused by hypofunction of the sympathetic neurons due to cofactor depletion and the loss of TH protein and, further, dysregulation of the NO/cGMP signaling pathway, which would be caused by disinhibition of nNOS-containing neurons and/or abnormal catabolism of cyclic nucleotides is suggested.


Assuntos
Priapismo , Oxirredutases do Álcool , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Norepinefrina/metabolismo , Priapismo/etiologia , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Cardiology ; 147(5-6): 539-546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223720

RESUMO

INTRODUCTION: Emergency department (ED) visits for decompensated heart failure (HF) are frequent and associated with poor long-term outcomes. Plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) and cyclic guanosine monophosphate (cGMP) are used in diagnosis and prognosis of HF patients, while clinical values of urine NT-proBNP/cGMP ratio have been rarely explored. This study aims to compare the predictive values of urine NT-proBNP/cGMP ratio versus plasma NT-proBNP for ED visits for decompensated HF. METHODS: This prospective study included 126 HF patients with reduced left ventricular ejection fraction (<50%) and without chronic kidney disease. Baseline data included demographics, co-morbidities, and co-medications. Medical records were used to determine the incidence of ED visits for decompensated HF during the 3 months following the last visit. RESULTS: Patients with subsequent ED visits had significantly higher levels of plasma and urine NT-proBNP and urine cGMP in than those without. Multivariate Cox regression analysis disclosed that Lg10urine NT-proBNP/cGMP was an independent risk factor for subsequent ED visits (OR = 3.267; 95% CI: 1.105-9.663; p = 0.032). ROC analysis revealed an Lg10urine NT-proBNP/cGMP ratio optimal cut-off value of 0.1706 (AUC, 0.700; 95% CI: 0.543-0.857; p = 0.036) for predicting subsequent HF-related ED visits. CONCLUSION: A single measurement of urinary NT-proBNP/cGMP ratio is predictive of subsequent ED visits for decompensated HF. This noninvasive and easy measurement may be a clinically useful tool for identifying a subset of patients at higher risk of ED visits.


Assuntos
Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Humanos , Volume Sistólico , Guanosina Monofosfato , Estudos Prospectivos , Função Ventricular Esquerda , Biomarcadores , Fragmentos de Peptídeos , Prognóstico , Serviço Hospitalar de Emergência
14.
Ecotoxicol Environ Saf ; 247: 114266, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334339

RESUMO

Particulate matter 2.5 (PM2.5) is a widely known atmospheric pollutant which can induce the aging-related pulmonary diseases such as acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD) and interstitial pulmonary fibrosis (IPF). In recent years, with the increasing atmospheric pollution, airborne fine PM2.5, which is an integral part of air pollutants, has become a thorny problem. Hence, this study focused on the effect of PM2.5 on cellular senescence in the lung, identifying which inflammatory pathway mediated PM2.5-induced cellular senescence and how to play a protective role against this issue. Our data suggested that PM2.5 induced time- and concentration-dependent increasement in the senescence of A549 cells. Using an inhibitor of cGAS (PF-06928215) and an inhibitor of NF-κB (BAY 11-7082), it was revealed that PM2.5-induced senescence was regulated by inflammatory response, which was closely related to the cGAS/STING/NF-κB pathway activated by DNA damage. Moreover, our study also showed that the pretreatment with selenomethionine (Se-Met) could inhibit inflammatory response and prevent cellular senescence by hindering cGAS/STING/NF-κB pathway in A549 cells exposed to PM2.5. Furthermore, in vivo C57BL/6J mice model demonstrated that aging of mouse lung tissue caused by PM2.5 was attenuated by decreasing cGAS expression after Se-Met treatment. Our findings indicated that selenium made a defense capability for PM2.5-induced cellular senescence in the lung, which provided a novel insight for resisting the harm of PM2.5 to human health.


Assuntos
NF-kappa B , Selenometionina , Animais , Humanos , Camundongos , Antioxidantes , Senescência Celular , Pulmão , Camundongos Endogâmicos C57BL , Nucleotidiltransferases , Material Particulado/toxicidade
15.
Zygote ; 30(1): 98-102, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34154685

RESUMO

To enhance the developmental competency of murine ovarian follicles cultured in vitro, C-type natriuretic peptide (CNP) was supplemented in the culture system. Although the mechanism is not fully elucidated, it was reported that the effect of CNP supplementation was mediated by increased cyclic guanosine monophosphate (cGMP). In the present study, cGMP levels in media for murine preantral follicle culture were compared both between a control group without CNP supplementation and an experimental group with CNP supplementation and between days in each group. In addition, follicle growth patterns and oocyte maturity were assessed and compared between the two groups. Results demonstrated that along with in vitro culture, cGMP levels increased (P < 0.05) both in the control group and the experimental group, whereas cGMP levels were not significantly different between the two groups on the same day of in vitro culture (P > 0.05). The oocyte's maturity was superior in the experimental group compared with the control group (P < 0.05). As ovarian follicles grew three-dimensionally in the experimental group but were flattened in the control group, CNP might improve oocyte maturity through maintaining the three-dimensional architecture of the ovarian follicle because of increased transzonal projections (TZP) and functional gap junctions between oocyte and surrounding granulosa cells.


Assuntos
GMP Cíclico/análise , Peptídeo Natriurético Tipo C , Folículo Ovariano , Animais , Meios de Cultura , Feminino , Células da Granulosa , Camundongos , Peptídeo Natriurético Tipo C/farmacologia , Oócitos
16.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269814

RESUMO

Guanosine 3',5'-cyclic monophosphate (cGMP) is an important signaling molecule in plants. cGMP and guanylyl cyclases (GCs), enzymes that catalyze the synthesis of cGMP from GTP, are involved in several physiological processes and responses to environmental factors, including pathogen infections. Using in vitro analysis, we demonstrated that recombinant BdGUCD1 is a protein with high guanylyl cyclase activity and lower adenylyl cyclase activity. In Brachypodium distachyon, infection by Fusarium pseudograminearum leads to changes in BdGUCD1 mRNA levels, as well as differences in endogenous cGMP levels. These observed changes may be related to alarm reactions induced by pathogen infection. As fluctuations in stress phytohormones after infection have been previously described, we performed experiments to determine the relationship between cyclic nucleotides and phytohormones. The results revealed that inhibition of cellular cGMP changes disrupts stress phytohormone content and responses to pathogen. The observations made here allow us to conclude that cGMP is an important element involved in the processes triggered as a result of infection and changes in its levels affect jasmonic acid. Therefore, stimuli-induced transient elevation of cGMP in plants may play beneficial roles in priming an optimized response, likely by triggering the mechanisms of feedback control.


Assuntos
Brachypodium , Brachypodium/metabolismo , GMP Cíclico/metabolismo , Ciclopentanos , Fusarium , Oxilipinas , Reguladores de Crescimento de Plantas
17.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269704

RESUMO

Interleukin-1 receptor-associated kinase-3 (IRAK3) is a critical checkpoint molecule of inflammatory responses in the innate immune system. The pseudokinase domain of IRAK3 contains a guanylate cyclase (GC) centre that generates small amounts of cyclic guanosine monophosphate (cGMP) associated with IRAK3 functions in inflammation. However, the mechanisms of IRAK3 actions are poorly understood. The effects of low cGMP levels on inflammation are unknown, therefore a dose-response effect of cGMP on inflammatory markers was assessed in THP-1 monocytes challenged with lipopolysaccharide (LPS). Sub-nanomolar concentrations of membrane permeable 8-Br-cGMP reduced LPS-induced NFκB activity, IL-6 and TNF-α cytokine levels. Pharmacologically upregulating cellular cGMP levels using a nitric oxide donor reduced cytokine secretion. Downregulating cellular cGMP using a soluble GC inhibitor increased cytokine levels. Knocking down IRAK3 in THP-1 cells revealed that unlike the wild type cells, 8-Br-cGMP did not suppress inflammatory responses. Complementation of IRAK3 knockdown cells with wild type IRAK3 suppressed cytokine production while complementation with an IRAK3 mutant at GC centre only partially restored this function. Together these findings indicate low levels of cGMP form a critical component in suppressing cytokine production and in mediating IRAK3 action, and this may be via a cGMP enriched nanodomain formed by IRAK3 itself.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Monócitos , GMP Cíclico , Citocinas , Guanilato Ciclase , Humanos , Inflamação , Quinases Associadas a Receptores de Interleucina-1/genética , Lipopolissacarídeos , Óxido Nítrico
18.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362045

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Assuntos
Tratamento Farmacológico da COVID-19 , Interferon Tipo I , Humanos , Acetilação , NF-kappa B/metabolismo , Reposicionamento de Medicamentos , Proteínas de Membrana/metabolismo , SARS-CoV-2 , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Aspirina , Imunidade Inata/genética
19.
Saudi Pharm J ; 30(8): 1079-1087, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36164567

RESUMO

Background: Although heart failure with preserved ejection fraction (HFpEF) is a serious disease, only limited options are available for its treatment. Recent studies have analyzed the effects of phosphodiesterase (PDE) inhibitors, especially PDE5 and PDE3 inhibitors, in patients with HFpEF, with mixed outcomes. Methods: We searched PUBMED and EMBASE databases up to August 2021. Randomized controlled trials (RCTs) and clinical trials that tested the effects of PDE inhibitors on patients with HFpEF were included as eligible studies. Indicators of left ventricular (LV) function, pulmonary arterial pressure (PAP), right ventricular (RV) function, exercise capacity, and quality of life (QOL) were used to evaluate the efficacy of PDE inhibitors in HFpEF. Results: Six RCTs that reported in 7 studies were included to evaluate the efficiency of PDE inhibitors on HFpEF patients. In the pooled analysis, PDE inhibitors showed insignificant changes in the ratio of early diastolic mitral inflow to annular velocities, left atrial volume index, pulmonary artery systolic pressure (PASP), pulmonary vascular resistance (PVR), peak oxygen uptake, 6-minute walking test distance, as well as Kansas City Cardiomyopathy Questionnaire score. However, substantial improvement was observed in the tricuspid annular plane systolic excursion (TAPSE). Additionally, the regression analysis showed that PDE inhibitor administration time is a critical factor for the decrease in PASP. Conclusions: PDE inhibitors did not effectively improve LV function, PAP, exercise capacity, and QOL in patients with HFpEF. However, they improved RV function with significant difference, suggesting that PDE inhibitors might be a promising option for HFpEF patients with RV dysfunction.

20.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30872316

RESUMO

Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING-dependent release of type I IFN Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe- and danger-associated molecular patterns that contribute to host-microbe crosstalk during health and disease.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Linhagem Celular , Endocitose/genética , Endocitose/imunologia , Espaço Extracelular , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sistemas do Segundo Mensageiro , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa