Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38596882

RESUMO

We currently lack a reliable method to probe cortical excitability noninvasively from the human dorsolateral prefrontal cortex (dlPFC). We recently found that the strength of early and local dlPFC transcranial magnetic stimulation (TMS)-evoked potentials (EL-TEPs) varied widely across dlPFC subregions. Despite these differences in response amplitude, reliability at each target is unknown. Here we quantified within-session reliability of dlPFC EL-TEPs after TMS to six left dlPFC subregions in 15 healthy subjects. We evaluated reliability (concordance correlation coefficient [CCC]) across targets, time windows, quantification methods, regions of interest, sensor- vs. source-space, and number of trials. On average, the medial target was most reliable (CCC = 0.78) and the most anterior target was least reliable (CCC = 0.24). However, all targets except the most anterior were reliable (CCC > 0.7) using at least one combination of the analytical parameters tested. Longer (20 to 60 ms) and later (30 to 60 ms) windows increased reliability compared to earlier and shorter windows. Reliable EL-TEPs (CCC up to 0.86) were observed using only 25 TMS trials at a medial dlPFC target. Overall, medial dlPFC targeting, wider windows, and peak-to-peak quantification improved reliability. With careful selection of target and analytic parameters, highly reliable EL-TEPs can be extracted from the dlPFC after only a small number of trials.


Assuntos
Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Córtex Pré-Frontal Dorsolateral , Reprodutibilidade dos Testes , Córtex Pré-Frontal/fisiologia , Potenciais Evocados/fisiologia
2.
Psychol Med ; : 1-14, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500410

RESUMO

BACKGROUND: Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS: We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS: Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION: Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.

3.
J Neural Transm (Vienna) ; 131(7): 823-832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643330

RESUMO

Individuals with attention deficit-hyperactivity disorder (ADHD) struggle with the interaction of attention and emotion. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are assumed to be involved in this interaction. In the present study, we aimed to explore the effect of stimulation applied over the dlPFC and vmPFC on attention bias in individuals with ADHD. Twenty-three children with ADHD performed the emotional Stroop and dot probe tasks during transcranial direct current stimulation (tDCS) in 3 conditions: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), and sham stimulation. Findings suggest reduction of attention bias in both real conditions based on emotional Stroop task and not dot probe task. These results were independent of emotional states. The dlPFC and vmPFC are involved in attention bias in ADHD. tDCS can be used for attention bias modification in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Viés de Atenção , Estimulação Transcraniana por Corrente Contínua , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Masculino , Criança , Feminino , Viés de Atenção/fisiologia , Córtex Pré-Frontal/fisiopatologia , Teste de Stroop , Adolescente
4.
Artigo em Inglês | MEDLINE | ID: mdl-39017736

RESUMO

Several cortical structures are involved in theory of mind (ToM), including the dorsolateral prefrontal cortex (dlPFC), the ventromedial prefrontal cortex (vmPFC), and the right temporo- parietal junction (rTPJ). We investigated the role of these regions in mind reading with respect to the valence of mental states. Sixty-five healthy adult participants were recruited and received transcranial direct current stimulation (tDCS) (1.5 mA, 20 min) with one week interval in three separate studies. The stimulation conditions were anodal tDCS over the dlPFC coupled with cathodal tDCS over the vmPFC, reversed stimulation conditions, and sham in the first study, and anodal tDCS over the vmPFC, or dlPFC, and sham stimulation, with an extracranial return electrode in the second and third study. During stimulation, participants underwent the reading mind from eyes/voice tests (RMET or RMVT) in each stimulation condition. Anodal left dlPFC/cathodal right vmPFC stimulation increased the accuracy of negative mental state attributions, anodal rTPJ decreased the accuracy of negative and neutral mental state attributions, and decreased the reaction time of positive mental state attributions. Our results imply that the neural correlates of ToM are valence-sensitive.

5.
BMC Psychiatry ; 24(1): 130, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365634

RESUMO

BACKGROUND: Electroconvulsive therapy (ECT) is a highly effective treatment for depressive disorder. However, the use of ECT is limited by its cognitive side effects (CSEs), and no specific intervention has been developed to address this problem. As transcranial direct current stimulation (tDCS) is a safe and useful tool for improving cognitive function, the main objective of this study was to explore the ability to use tDCS after ECT to ameliorate the cognitive side effects. METHODS: 60 eligible participants will be recruited within two days after completing ECT course and randomly assigned to receive either active or sham stimulation in a blinded, parallel-design trial and continue their usual pharmacotherapy. The tDCS protocol consists of 30-min sessions at 2 mA, 5 times per week for 2 consecutive weeks, applied through 15-cm2 electrodes. An anode will be placed over the left dorsolateral prefrontal cortex (DLPFC), and a cathode will be placed over the right supraorbital cortex. Cognitive function and depressive symptoms will be assessed before the first stimulation (T0), after the final stimulation (T1), 2 weeks after the final stimulation (T2), and 4 weeks after the final stimulation (T3) using the Cambridge Neuropsychological Test Automated Battery (CANTAB). DISCUSSION: We describe a novel clinical trial to explore whether the administration of tDCS after completing ECT course can accelerates recovery from the CSEs. We hypothesized that the active group would recover faster from the CSEs and be superior to the sham group. If our hypothesis is supported, the use of tDCS could benefit eligible patients who are reluctant to receive ECT and reduce the risk of self-inflicted or suicide due to delays in treatment. TRIAL REGISTRATION DETAILS: The trial protocol is registered with https://www.chictr.org.cn/ under protocol registration number ChiCTR2300071147 (date of registration: 05.06.2023). Recruitment will start in November 2023.


Assuntos
Eletroconvulsoterapia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Eletroconvulsoterapia/efeitos adversos , Depressão/terapia , Córtex Pré-Frontal/fisiologia , Cognição , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Neuroscience ; 546: 41-52, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38548166

RESUMO

Task switching refers to a set of cognitive processes involved in shifting attention from one task to another. In recent years, researchers have applied transcranial direct current stimulation (tDCS) to investigate the causal relationship between the parietal cortex and task switching. However, results from available studies are highly inconsistent. This may be due to the unclear understanding of the underlying mechanisms. Therefore, the current study utilized event-related potential (ERP) analysis to investigate the modulatory effects of tDCS on task-switching processes. Twenty-four subjects were recruited to perform both predictable and unpredictable parity/magnitude tasks under anodal (RA) and sham conditions. The results showed no significant changes in behavioral performance. However, marked tDCS-induced ERP changes were observed. Specifically, for the predictable task switching, compared with the sham condition, the target-N2 component occurred significantly earlier for switch trials than repeat trials under the RA condition in males, while no difference was found in females. For unpredictable task switching, under the sham condition, the P2 peak was significantly larger for switch trials compared with repeat trials, whereas this difference was not observed under the RA condition. These results indicated the causal relationship between the right parietal cortex and exogenous adjustment processes involved in task switching. Moreover, anodal tDCS over the right parietal cortex may lead to the manifestation of gender differences.


Assuntos
Atenção , Potenciais Evocados , Lobo Parietal , Estimulação Transcraniana por Corrente Contínua , Humanos , Lobo Parietal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Potenciais Evocados/fisiologia , Adulto Jovem , Atenção/fisiologia , Adulto , Eletroencefalografia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia
7.
Clin Neurophysiol ; 164: 138-148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865780

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring. OBJECTIVE: To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach. METHODS: In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses. RESULTS: Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%. SIGNIFICANCE: EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.


Assuntos
Córtex Pré-Frontal Dorsolateral , Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Adulto , Eletroencefalografia/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Mapeamento Encefálico/métodos , Excitabilidade Cortical/fisiologia , Adulto Jovem , Córtex Pré-Frontal/fisiologia
8.
Neuroscience ; 554: 63-71, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39002755

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) combined with electroencephalography (EEG), TMS-EEG, is a useful neuroscientific tool for the assessment of neurophysiology in the human cerebral cortex. Theoretically, TMS-EEG data is expected to have a better data quality as the number of stimulation pulses increases. However, since TMS-EEG testing is a modality that is examined on human subjects, the burden on the subject and tolerability of the test must also be carefully considered. METHOD: In this study, we aimed to determine the number of stimulation pulses that satisfy the reliability and validity of data quality in single-pulse TMS (spTMS) for the dorsolateral prefrontal cortex (DLPFC). TMS-EEG data for (1) 40-pulse, (2) 80-pulse, (3) 160-pulse, and (4) 240-pulse conditions were extracted from spTMS experimental data for the left DLPFC of 20 healthy subjects, and the similarities between TMS-evoked potentials (TEP) and oscillations across the conditions were evaluated. RESULTS: As a result, (2) 80-pulse and (3) 160-pulse conditions showed highly equivalent to the benchmark condition of (4) 240-pulse condition. However, (1) 40-pulse condition showed only weak to moderate equivalence to the (4) 240-pulse condition. Thus, in the DLPFC TMS-EEG experiment, 80 pulses of stimulations was found to be a reasonable enough number of pulses to extract reliable TEPs, compared to 160 or 240 pulses. CONCLUSIONS: This is the first substantial study to examine the appropriate number of stimulus pulses that are reasonable and feasible for TMS-EEG testing of the DLPFC.


Assuntos
Eletroencefalografia , Estudos de Viabilidade , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Reprodutibilidade dos Testes , Córtex Pré-Frontal/fisiologia , Potenciais Evocados/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia
9.
Heliyon ; 10(5): e27288, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495204

RESUMO

Despite the prevalence of empirical practice, evidence supporting the use of repetitive transcranial magnetic stimulation (rTMS) in treating bipolar depression (BD) is sparse compared to that for unipolar depression. Therefore, this study aimed to conduct a retrospective observational analysis using TMS registry data to compare the efficacy of rTMS treatment for BD and unipolar depression. Data from 20 patients diagnosed with unipolar and BD were retrospectively extracted from the TMS registry to ensure age and sex matching. The primary outcomes of this registry study were measured using the 21-item Hamilton Depression Rating Scale (HAM-D21) and Montgomery-Åsberg Depression Rating Scale (MADRS). Analysis did not reveal significant differences between the two groups in terms of depression severity, motor threshold, or stimulus intensity at baseline. Similarly, no significant differences were observed in absolute or relative changes in the total HAM-D21 and MADRS scores. Furthermore, the response and remission rates following rTMS treatment did not differ significantly between groups. The only adverse event reported in this study was scalp pain at the stimulation site; however, the incidence and severity were not significantly different between the groups. In conclusion, this retrospective study, using real-world TMS registry data, suggests that rTMS treatment for BD could be as effective as that for unipolar depression. These findings underscore the need for further validation in prospective randomized controlled trials with larger sample sizes.

10.
Sci Rep ; 14(1): 7600, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556535

RESUMO

Children with attention deficit-hyperactivity disorder (ADHD) have impaired hot and cold executive functions, which is thought to be related to impaired ventromedial and dorsolateral prefrontal cortex (vmPFC and dlPFC) functions. The present study aimed to assess the impact concurrent stimulation of dlPFC and vmPFC through transcranial random noise stimulation (tRNS), a non-invasive brain stimulation tool which enhances cortical excitability via application of alternating sinusoidal currents with random frequencies and amplitudes over the respective target regions on hot and cold executive functions. Eighteen children with ADHD received real and sham tRNS over the left dlPFC and the right vmPFC in two sessions with one week interval. The participants performed Circle Tracing, Go/No-Go, Wisconsin Card Sorting, and Balloon Analogue Risk Tasks during stimulation in each session. The results showed improved ongoing inhibition, prepotent inhibition, working memory, and decision making, but not set-shifting performance, during real, as compared to sham stimulation. This indicates that simultaneous stimulation of the dlPFC and the vmPFC improves hot and cold executive functions in children with ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulação Transcraniana por Corrente Contínua , Criança , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Função Executiva/fisiologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Córtex Pré-Frontal/fisiologia , Memória de Curto Prazo/fisiologia
11.
Sci Rep ; 14(1): 8064, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580697

RESUMO

The causal role of the cerebral hemispheres in positive and negative emotion processing remains uncertain. The Right Hemisphere Hypothesis proposes right hemispheric superiority for all emotions, while the Valence Hypothesis suggests the left/right hemisphere's primary involvement in positive/negative emotions, respectively. To address this, emotional video clips were presented during dorsolateral prefrontal cortex (DLPFC) electrical stimulation, incorporating a comparison of tDCS and high frequency tRNS stimulation techniques and manipulating perspective-taking (first-person vs third-person Point of View, POV). Four stimulation conditions were applied while participants were asked to rate emotional video valence: anodal/cathodal tDCS to the left/right DLPFC, reverse configuration (anodal/cathodal on the right/left DLPFC), bilateral hf-tRNS, and sham (control condition). Results revealed significant interactions between stimulation setup, emotional valence, and POV, implicating the DLPFC in emotions and perspective-taking. The right hemisphere played a crucial role in both positive and negative valence, supporting the Right Hemisphere Hypothesis. However, the complex interactions between the brain hemispheres and valence also supported the Valence Hypothesis. Both stimulation techniques (tDCS and tRNS) significantly modulated results. These findings support both hypotheses regarding hemispheric involvement in emotions, underscore the utility of video stimuli, and emphasize the importance of perspective-taking in this field, which is often overlooked.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Pré-Frontal/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal Dorsolateral , Incerteza
12.
J Psychiatr Res ; 175: 170-182, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38735262

RESUMO

BACKGROUND: Ending a romantic relationship is one of the most painful losses an adult experience. Neuroimaging studies suggest that there is a neuropsychological link between breakup experiences and bereaved individuals, and that specific prefrontal regions are involved. The aim of this study was to determine whether enhancement of left DLPFC and right VLPFC activity with a novel intensified anodal transcranial direct current stimulation protocol reduces core symptoms of love trauma syndrome (LTS) and improves treatment-related variables. METHODS: In this randomized, sham-controlled, single-blind parallel trial, we assessed the efficacy of an intensified anodal stimulation protocol (20 min, twice-daily sessions with 20 min intervals, 5 consecutive days) with two montages (left DLPFC vs right VLPFC) to reduce love trauma symptoms. 36 participants with love trauma syndrome were randomized in three tDCS condition (left DLPFC, right VLPFC, sham stimulation). LTS symptoms, treatment-related outcome variables (depressive state, anxiety, emotion regulation, positive and negative affect), and cognitive functions were assessed before, right after, and one month after intervention. RESULTS: Both DLPFC and VLPFC protocols significantly reduced LTS symptoms, and improved depressive state and anxiety after the intervention, as compared to the sham group. The improving effect of the DLPFC protocol on love trauma syndrome was significantly larger than that of the VLPFC protocol. For emotion regulation and positive and negative affect, improved regulation of emotions and positive affect and reduced negative affect were revealed after intervention in the two real stimulation conditions compared to the sham. For cognitive functions, no significant difference was observed between the groups, but again a positive effect of intervention within groups in the real stimulation conditions (DLPFC and VLPFC) was found for most components of the cognitive tasks. CONCLUSIONS: Enhancement of left DLPFC and right VLPFC activity with intensified stimulation improves LTS symptoms and treatment-related variables. For LTS symptoms, DLPFC stimulation was more efficient than VLPFC stimulation., For the other variables, no significant difference was observed between these two stimulation groups. These promising results require replication in larger trials.

13.
Brain Res ; 1838: 148989, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723740

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (DLPFC) is an established treatment for medication-resistant depression. Several targeting methods for the left DLPFC have been proposed including identification with resting-state functional magnetic resonance imaging (rs-fMRI) neuronavigation, stimulus coordinates based on structural MRI, or electroencephalography (EEG) F3 site by Beam F3 method. To date, neuroanatomical and neurofunctional differences among those approaches have not been investigated on healthy subjects, which are structurally and functionally unaffected by psychiatric disorders. This study aimed to compare the mean location, its dispersion, and its functional connectivity with the subgenual cingulate cortex (SGC), which is known to be associated with the therapeutic outcome in depression, of various approaches to target the DLPFC in healthy subjects. Fifty-seven healthy subjects underwent MRI scans to identify the stimulation site based on their resting-state functional connectivity and were measured their head size for targeting with Beam F3 method. In addition, we included two fixed stimulus coordinates over the DLPFC in the analysis, as recommended in previous studies. From the results, the rs-fMRI method had, as expected, more dispersed target sites across subjects and the greatest anticorrelation with the SGC, reflecting the known fact that personalized neuronavigation yields the greatest antidepressant effect. In contrast, the targets located by the other methods were relatively close together with less dispersion, and did not differ in anticorrelation with the SGC, implying their limitation of the therapeutic efficacy and possible interchangeability of them.


Assuntos
Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Adulto , Feminino , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto Jovem , Eletroencefalografia/métodos , Neuronavegação/métodos , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Voluntários Saudáveis
14.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853941

RESUMO

Objective: We currently lack a robust noninvasive method to measure prefrontal excitability in humans. Concurrent TMS and EEG in the prefrontal cortex is usually confounded by artifacts. Here we asked if real-time optimization could reduce artifacts and enhance a TMS-EEG measure of left prefrontal excitability. Methods: This closed-loop optimization procedure adjusts left dlPFC TMS coil location, angle, and intensity in real-time based on the EEG response to TMS. Our outcome measure was the left prefrontal early (20-60 ms) and local TMS-evoked potential (EL-TEP). Results: In 18 healthy participants, this optimization of coil angle and brain target significantly reduced artifacts by 63% and, when combined with an increase in intensity, increased EL-TEP magnitude by 75% compared to a non-optimized approach. Conclusions: Real-time optimization of TMS parameters during dlPFC stimulation can enhance the EL-TEP. Significance: Enhancing our ability to measure prefrontal excitability is important for monitoring pathological states and treatment response.

15.
J Pers Med ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929883

RESUMO

Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.

16.
Front Psychol ; 14: 1275878, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235279

RESUMO

Introduction: Cognitive functioning is central to the ability to learn, problem solve, remember, and use information in a rapid and accurate manner and cognitive abilities are fundamental for communication, autonomy, and quality of life. Transcranial electric stimulation (tES) is a very promising tool shown to improve various motor and cognitive functions. When applied as a direct current stimulus (transcranial direct current stimulation; tDCS) over the dorsolateral pre-frontal cortex (DLPFC), this form of neurostimulation has mixed results regarding its ability to slow cognitive deterioration and potentially enhance cognitive functioning, requiring further investigation. This study set out to comprehensively investigate the effect that anodal and cathodal bipolar bihemispheric tDCS have on executive function and working memory abilities. Methods: 72 healthy young adults were recruited, and each participant was randomly allocated to either a control group (CON), a placebo group (SHAM) or one of two neurostimulation groups (Anodal; A-STIM and Cathodal; C-STIM). All participants undertook cognitive tests (Stroop & N Back) before and after a 30-minute stimulation/ sham/ control protocol. Results: Overall, our results add further evidence that tDCS may not be as efficacious for enhancing cognitive functioning as it has been shown to be for enhancing motor learning when applied over M1. We also provide evidence that the effect of neurostimulation on cognitive functioning may be moderated by sex, with males demonstrating a benefit from both anodal and cathodal stimulation when considering performance on simple attention trial types within the Stroop task. Discussion: Considering this finding, we propose a new avenue for tDCS research, that the potential that sex may moderate the efficacy of neurostimulation on cognitive functioning.

17.
Brain Sci ; 13(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38137090

RESUMO

Stress impacts prefrontal cortex (PFC) activity and modulates working memory performance. In a recent study, stimulating the dorsolateral PFC (dlPFC) using transcranial direct current stimulation (tDCS) interacted with social stress in modulating participants' working memory. More specifically, stress disrupted the enhancing effects of dlPFC tDCS on working memory performance. The current study aimed to further explore these initial findings by randomizing healthy females to four experimental conditions (N = 130); stimulation (right dlPFC tDCS vs. sham) and stress manipulation (social stress vs. control). Participants performed cognitive tasks (i.e., visual working memory task and a visual declarative memory task) at baseline and post-stimulation. They also completed self-report measures of stress and anxiety. A significant stimulation × stress interaction was evident in the declarative memory (One-Card Learning, OCL) task, while working memory performance was unaffected. Though tDCS stimulation and stress did not interact to affect working memory, further research is warranted as these initial findings suggest that immediate visual-memory learning may be affected by these factors. The limited number of earlier studies, as well as the variability in their designs, provides additional impetus for studying the interactive effects of stress and tDCS on human visual learning.

18.
Indian J Psychiatry ; 65(11): 1151-1157, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38249138

RESUMO

Background: Obsessive-compulsive disorder (OCD) is a common psychiatric disorder whose underlying pathophysiology is insufficiently understood. The pathophysiology of OCD may be related to abnormalities in the biochemistry of neurotransmitters. Aim: The aim of the present study was to measure the absolute concentration of various metabolites in the right dorsolateral prefrontal cortex (DLPFC) and caudate nucleus (CN) in treatment-naive patients with OCD and compare it with healthy controls (HCs). Methods: The present study investigated the metabolic profile of two brain regions, namely right DLPFC and CN, by using single voxel in-vivo proton magnetic resonance spectroscopy (1H MRS) in drug-naive patients with OCD (n = 17, mean age = 30.71 ± 10.104 years) and compared it with healthy controls (n = 13, mean age = 30.77 ± 5.449 years). The patients with OCD were recruited after appropriate psychometric assessments. The 1H-MRS experiments were performed using the 3 Tesla (3T) human MR scanner, and absolute concentrations of metabolites were estimated using the LC model. Results: Significantly lower concentration of tNAA in the right DLPFC was observed in the patients with OCD compared to the controls, which may be indicative of neurodegeneration in this region. However, no significant differences were observed in the concentrations of the metabolites between the patients and controls in the CN region. The level of tNAA in DLPFC significantly correlated with the disability level (WHO-DAS) of the patients. Conclusions: The present study demonstrates abnormalities in the metabolic profile of an important region, DLPFC of the CSTC circuit, which is suggestive of neurodegeneration in the region in OCD patients.

19.
Front Neurogenom ; 2: 731160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38235246

RESUMO

Understanding consumer preferences and behavior is a major goal of consumer-oriented companies. The application of neuroscience to this goal is a promising avenue for companies. Previously, we observed a positive correlation during actual cosmetic use between the right dorsolateral prefrontal cortex (dlPFC) activity, measured by functional near-infrared spectroscopy (fNIRS), and the associated willingness-to-pay (WTP) values. However, we were unable to find any consistent group differences in the right dlPFC between different powdery foundations. Thus, the main objective of this study was to replicate the previous study and in addition, we aimed to refine the method of the previous study to increase the chance that a difference in valuation between different products can be detected. Twenty-five frequent lipstick using females were asked to apply six different lipsticks to their lips and to record how much they were willing to pay. To maximize the variation of the subjective experience of the products and the associated brain activity, the most preferred color lipstick and a less preferred color lipstick were chosen for each participant, and each color of lipstick had three different textures (Lo, Mid, and Hi). The time series was analyzed with the general linear model (GLM) and the correlation between the right dlPFC beta scores for the lipsticks and their respective WTP values conducted for each participant. This revealed a significant positive correlation and replicated our previous study. Surprisingly, the lipstick color and the texture manipulations did not result in any consistent differences in WTP and similarly no consistent group differences in brain activations. This study replicates our previous study extending it to a different type of cosmetic. The right dlPFC activity during the use of cosmetics may be a potential brain-based personalization or product selection process biomarker.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa