Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2213154120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574681

RESUMO

Microbes naturally coexist in complex, multistrain communities. However, extracting individual microbes from and specifically manipulating the composition of these consortia remain challenging. The sequence-specific nature of CRISPR guide RNAs can be leveraged to accurately differentiate microorganisms and facilitate the creation of tools that can achieve these tasks. We developed a computational program, ssCRISPR, which designs strain-specific CRISPR guide RNA sequences with user-specified target strains, protected strains, and guide RNA properties. We experimentally verify the accuracy of the strain specificity predictions in both Escherichia coli and Pseudomonas spp. and show that up to three nucleotide mismatches are often required to ensure perfect specificity. To demonstrate the functionality of ssCRISPR, we apply computationally designed CRISPR-Cas9 guide RNAs to two applications: the purification of specific microbes through one- and two-plasmid transformation workflows and the targeted removal of specific microbes using DNA-loaded liposomes. For strain purification, we utilize gRNAs designed to target and kill all microbes in a consortium except the specific microbe to be isolated. For strain elimination, we utilize gRNAs designed to target only the unwanted microbe while protecting all other strains in the community. ssCRISPR will be of use in diverse microbiota engineering applications.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Consórcios Microbianos , Plasmídeos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
2.
Microb Pathog ; 136: 103653, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31398527

RESUMO

Pneumococcal strains are variably resistant to killing by neutrophil extracellular traps (NETs). We hypothesize that this variability in resistance is due to heterogeneity in pneumococcal surface protein A (PspA), a structurally diverse virulence factor of Streptococcus pneumoniae. Pneumococcal strains showed variability in induction of NETs and in susceptibility to killing by NETs. The variability in susceptibility to NETs-mediated killing of pneumococcal strains is attributed to PspA, as strains lacking the surface expression of PspA were significantly more sensitive to NETs-mediated killing compared to the wild-type strains. Using pspA switch mutants we were further able to demonstrate that NETs induction and killing by NETs is a function of PspA as mutants with switch PspA demonstrated donor phenotype. Antibody to PspA alone showed an increase in induction of NETs, and NETs thus generated were able to trap and kill pneumococci. Pneumococci opsonized with antibody to PspA showed increase adherence to NETs but a decrease susceptibility to killing by NETs. In conclusion we demonstrate a novel role for pneumococcal PspA in resisting NETs mediated killing and allowing the bacteria to escape containment by blocking binding of pneumococci to NETs.


Assuntos
Proteínas de Bactérias/metabolismo , Armadilhas Extracelulares/metabolismo , Evasão da Resposta Imune , Viabilidade Microbiana , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/fisiologia , Células Cultivadas , Humanos
3.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200473

RESUMO

Previously, we showed that chitosan could augment the biocidal efficacy mediated by photodynamic treatment against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In this study, we showed that the antimicrobial action of chitosan in augmenting photodynamic inactivation (PDI) is related to the increase in cell surface destruction. The microbial cell surfaces exhibit severe irregular shapes after PDI in the presence of chitosan as demonstrated by transmitted electron microscopy. Furthermore, increases in the concentration or incubation time of chitosan significantly reduced the amounts of photosensitizer toluidine blue O required, indicating that chitosan could be an augmenting agent used in conjunction with PDI against S. aureus, P. aeruginosa, and C. albicans. A prolonged lag phase was found in microbial cells that survived to PDI, in which chitosan acted to completely eradicate the cells. Once the exponential log stage and cell rebuild began, their cellular functions from PDI-induced damage returned and the increased cytotoxic effect of chitosan disappeared. Together, our results suggest that chitosan can prevent the rehabilitation of PDI-surviving microbial cells, leading to increased biocidal efficacy.


Assuntos
Candida albicans/efeitos dos fármacos , Quitosana/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cloreto de Tolônio/administração & dosagem , Anti-Infecciosos/administração & dosagem , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Fármacos Fotossensibilizantes/administração & dosagem , Fatores de Tempo
4.
Front Pharmacol ; 13: 1024608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330086

RESUMO

Background: There is need for shorter duration regimens for the treatment of tuberculosis, that can treat patients regardless of multidrug resistance status (pan-tuberculosis). Methods: We combined minocycline with tedizolid, moxifloxacin, and rifampin, in the hollow fiber system model of tuberculosis and mimicked each drugs' intrapulmonary pharmacokinetics for 28 days. Minocycline-tedizolid was administered either as a once-a-week or a daily regimen. In order to explore a possible explanation for effectiveness of the once-a-week regimen, we measured systemic and intra-bacterial minocycline pharmacokinetics. Standard daily therapy (rifampin, isoniazid, pyrazinamide) was the comparator. We then calculated γ f or kill slopes for each regimen and ranked the regimens by time-to-extinction predicted in patients. Results: The steepest γ f and shortest time-to-extinction of entire bacterial population was with daily minocycline-rifampin combination. There was no difference in γ f between the minocycline-tedizolid once-a-week versus the daily therapy (p = 0.85). Standard therapy was predicted to cure 88% of patients, while minocycline-rifampin would cure 98% of patients. Minocycline concentrations fell below minimum inhibitory concentration after 2 days of once-weekly dosing schedule. The shape of minocycline intra-bacterial concentration-time curve differed from the extracellular pharmacokinetic system and lagged by several days, consistent with system hysteresis. Hysteresis explained the persistent microbial killing after hollow fiber system model of tuberculosis concentrations dropped below the minimum inhibitory concentration. Conclusion: Minocycline could form a backbone of a shorter duration once-a-week pan-tuberculosis regimen. We propose a new concept of post-antibiotic microbial killing, distinct from post-antibiotic effect. We propose system hysteresis as the basis for the novel concept of pharmacologic memory, which allows intermittent dosing.

5.
Front Immunol ; 13: 840510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317169

RESUMO

The phagocytosis-promoting complement receptor, Complement Receptor Immunoglobulin (CRIg), is exclusively expressed on macrophages. It has been demonstrated that expression in macrophages could be modulated by inflammatory mediators, including cytokines. This raised the possibility that a major phagocyte, the neutrophil, may also express CRIg following activation with inflammatory mediators. Here we show that resting peripheral blood neutrophil lysates subjected to protein analysis by Western blot revealed a 35 kDa CRIg isoform, consistent with the expression of CRIg mRNA by RT-PCR. By flow cytometry, CRIg was detected intracellularly and in very minor amounts on the cell surface. Interestingly, expression on the cell surface was significantly increased to functional levels after activation with inflammatory mediators/neutrophil activators; N-Formylmethionine-leucyl-phenylalanine, tumor necrosis factor (TNF), Granulocyte-Macrophage Colony stimulating Factor (GM-CSF), bacterial lipopolysaccharide, leukotriene B4 and phorbol myristate acetate. The increase in expression required p38 MAP kinase and protein kinase C activation, as well as intracellular calcium. Neutrophils which were defective in actin microfilament reorganization due to a mutation in ARPC1B or inhibition of its upstream regulator, Rac2 lose their ability to upregulate CRIg expression. Inhibition of another small GTPase, Rab27a, with pharmacological inhibitors prevented the increase in CRIg expression, suggesting a requirement for the actin cytoskeleton and exocytosis. Engagement of CRIg on TNF-primed neutrophils with an anti-CRIg monoclonal antibody increased the release of superoxide and promoted the activation of p38 but not ERK1/ERK2 or JNK MAP kinases. The TNF-induced increase in killing of Staphylococcus aureus was blocked by the anti-CRIg antibody. Adding to the anti-microbial role of CRIg, it was found that GM-CSF priming lead to the release of neutrophil extracellular traps. Interestingly in contrast to the above mediators the anti-inflammatory cytokine IL-10 caused a decrease in basal expression and GM-CSF induced increase in CRIg expression. The data demonstrate that neutrophils also express CRIg which is regulated by inflammatory mediators and cytokines. The findings show that the neutrophil antimicrobial function involving CRIg requires priming as a means of arming the cell strategically with microbial invasion of tissues and the bloodstream.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neutrófilos , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunoglobulinas/metabolismo , Mediadores da Inflamação/metabolismo , Neutrófilos/metabolismo , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Free Radic Res ; 53(3): 281-292, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30621514

RESUMO

Recent report from this lab has shown role of Rac2 in the translocation of inducible nitric oxide synthase (iNOS) to the phagosomal compartment of polymorphonuclear leukocytes (PMNs) following phagocytosis of beads. This study was undertaken to further assess the status and role of tetrahydrobiopterin (BH4), a redox-sensitive cofactor, L-arginine, and the substrate of nitric oxide synthase (NOS) in sustained nitric oxide (˙NO) production in killing of phagocytosed microbes (Escherichia coli) by human PMNs. Time-dependent study revealed consistent NO and reactive oxygen species (ROS) production in the PMNs following phagocytosis of beads. In addition, levels of L-arginine and BH4 were maintained or increased simultaneously to support the enzymatic activity of NOS in the bead activated PMNs. Moreover, translocation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) subunits along with iNOS was reconfirmed in the isolated phagosomes. We demonstrate that increase in the level of NO was supported by L-arginine and BH4 to kill E. coli, by using PMNs from NOS2-/- mice, human PMNs treated with biopterin inhibitor, N-acetyl serotonin (NAS), or by suspending human PMNs in L-arginine deficient medium. Altogether, this study demonstrates that following phagocytosis, sustained. NO production in the PMNs was well-maintained by redox sensitive cofactor, BH4 and substrate, and L-arginine to enable microbial killing. Further results suggest NO production in the human PMNs, along with ROS and myeloperoxidase (MPO) is important to execute antimicrobial activity.


Assuntos
Arginina/metabolismo , Biopterinas/análogos & derivados , Neutrófilos/metabolismo , Óxido Nítrico/metabolismo , Adulto , Biopterinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
J Leukoc Biol ; 105(6): 1285-1296, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30821868

RESUMO

It is now evident that NK cells kill bacteria, fungi, and parasites in addition to tumor and virus-infected cells. In addition to a number of recent publications that have identified the receptors and ligands, and mechanisms of cytotoxicity, new insights are reflected in the reports from researchers all over the world at the 17th Meeting of the Society for Natural Immunity held in San Antonio, TX, USA from May 28 through June 1, 2018. We will provide an overview of the field and discuss how the presentations at the meeting might shape our knowledge and future directions in the field.


Assuntos
Bactérias/imunologia , Fungos/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Vírus/imunologia , Animais , Congressos como Assunto , Humanos , Imunidade Inata , Sociedades Científicas , Texas
8.
Methods Mol Biol ; 1982: 301-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172480

RESUMO

Phagosomal ROS generation is critical for our immune defense against microbial infections. Quantitative assessment of phagosomal ROS production is required to understand the complex relationship between the phagocyte and the microbe, in particular for pathogens that resist phagosomal destruction. ROS detection is difficult due to the transient nature of the reactive species and their multiple interactions with the environment. Direct labeling of phagocytic prey with a ROS-sensitive dye allows to target the dye into the phagosome and to follow the kinetics of phagosomal ROS production on a single phagosome base. Here we describe the basic labeling procedure, the quality assessment, and the imaging technique to achieve this kinetic analysis.


Assuntos
Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citometria de Fluxo , Fluoresceínas/química , Cinética , Imagem Molecular/métodos , NADPH Oxidases/metabolismo , Fagocitose , Coloração e Rotulagem , Imagem com Lapso de Tempo , Leveduras/metabolismo
9.
Cell Rep ; 22(11): 2937-2950, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539422

RESUMO

Neutrophil granule proteases are thought to function as anti-microbial effectors, cooperatively hydrolyzing microorganisms within phagosomes, or upon deployment into the extracellular space. However, evidence also suggests that neutrophil proteases play an important role in the coordination and escalation of inflammatory reactions, but how this is achieved has been obscure. IL-1 family cytokines are important initiators of inflammation and are typically released via necrosis but require proteolytic processing for activation. Here, we show that proteases liberated from activated neutrophils can positively or negatively regulate the activity of six IL-1 family cytokines (IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß, and IL-36γ) with exquisite sensitivity. In contrast, extracellular neutrophil proteases displayed very poor bactericidal activity, exhibiting 100-fold greater potency toward cytokine processing than bacterial killing. Thus, in addition to their classical role as phagocytes, neutrophils play an important immunoregulatory role through deployment of their granule proteases into the extracellular space to process multiple IL-1 family cytokines.


Assuntos
Citocinas/metabolismo , Espaço Extracelular/metabolismo , Interleucina-1/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-33/metabolismo , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Humanos
10.
Nutrients ; 9(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099763

RESUMO

Vitamin C is an essential micronutrient for humans, with pleiotropic functions related to its ability to donate electrons. It is a potent antioxidant and a cofactor for a family of biosynthetic and gene regulatory enzymes. Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C supports epithelial barrier function against pathogens and promotes the oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. It is also needed for apoptosis and clearance of the spent neutrophils from sites of infection by macrophages, thereby decreasing necrosis/NETosis and potential tissue damage. The role of vitamin C in lymphocytes is less clear, but it has been shown to enhance differentiation and proliferation of B- and T-cells, likely due to its gene regulating effects. Vitamin C deficiency results in impaired immunity and higher susceptibility to infections. In turn, infections significantly impact on vitamin C levels due to enhanced inflammation and metabolic requirements. Furthermore, supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections. Prophylactic prevention of infection requires dietary vitamin C intakes that provide at least adequate, if not saturating plasma levels (i.e., 100-200 mg/day), which optimize cell and tissue levels. In contrast, treatment of established infections requires significantly higher (gram) doses of the vitamin to compensate for the increased inflammatory response and metabolic demand.


Assuntos
Imunidade Adaptativa , Ácido Ascórbico/imunologia , Sistema Imunitário/imunologia , Imunidade Inata , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/metabolismo , Deficiência de Ácido Ascórbico/imunologia , Deficiência de Ácido Ascórbico/metabolismo , Deficiência de Ácido Ascórbico/prevenção & controle , Doenças Transmissíveis/tratamento farmacológico , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Suplementos Nutricionais , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Imunidade Inata/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa