Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 673-703, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340576

RESUMO

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Variação Genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Imunização Passiva , RNA Viral , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
2.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
3.
Immunity ; 57(3): 574-586.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430907

RESUMO

Continuously evolving influenza viruses cause seasonal epidemics and pose global pandemic threats. Although viral neuraminidase (NA) is an effective drug and vaccine target, our understanding of the NA antigenic landscape still remains incomplete. Here, we describe NA-specific human antibodies that target the underside of the NA globular head domain, inhibit viral propagation of a wide range of human H3N2, swine-origin variant H3N2, and H2N2 viruses, and confer both pre- and post-exposure protection against lethal H3N2 infection in mice. Cryo-EM structures of two such antibodies in complex with NA reveal non-overlapping epitopes covering the underside of the NA head. These sites are highly conserved among N2 NAs yet inaccessible unless the NA head tilts or dissociates. Our findings help guide the development of effective countermeasures against ever-changing influenza viruses by identifying hidden conserved sites of vulnerability on the NA underside.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Suínos , Proteínas Virais/genética , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Anticorpos Monoclonais , Anticorpos Antivirais
4.
Immunity ; 56(10): 2408-2424.e6, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531955

RESUMO

V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vacinas , Animais , Camundongos , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Antígenos Virais , Produtos do Gene env do Vírus da Imunodeficiência Humana
5.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36356572

RESUMO

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Hemaglutininas , Anticorpos Amplamente Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Antivirais , Furões , Anticorpos Neutralizantes , Imunização
6.
Immunity ; 46(5): 792-803.e3, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514686

RESUMO

Advances in HIV-1 envelope glycoprotein (Env) design generate native-like trimers and high-resolution clade A, B, and G structures and elicit neutralizing antibodies. However, a high-resolution clade C structure is critical, as this subtype accounts for the majority of HIV infections worldwide, but well-ordered clade C Env trimers are more challenging to produce due to their instability. Based on targeted glycine substitutions in the Env fusion machinery, we defined a general approach that disfavors helical transitions leading to post-fusion conformations, thereby favoring the pre-fusion state. We generated a stabilized, soluble clade C Env (16055 NFL) and determined its crystal structure at 3.9 Å. Its overall conformation is similar to SOSIP.664 and native Env trimers but includes a covalent linker between gp120 and gp41, an engineered 201-433 disulfide bond, and density corresponding to 22 N-glycans. Env-structure-guided design strategies resulted in multiple homogeneous cross-clade immunogens with the potential to advance HIV vaccine development.


Assuntos
Substituição de Aminoácidos , Glicina/química , HIV-1/imunologia , Conformação Proteica em alfa-Hélice , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Genótipo , Glicina/genética , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/classificação , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/imunologia , Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteólise , Solubilidade , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
7.
Immunity ; 46(5): 777-791.e10, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514685

RESUMO

Most HIV-1-specific neutralizing antibodies isolated to date exhibit unusual characteristics that complicate their elicitation. Neutralizing antibodies that target the V1V2 apex of the HIV-1 envelope (Env) trimer feature unusually long protruding loops, which enable them to penetrate the HIV-1 glycan shield. As antibodies with loops of requisite length are created through uncommon recombination events, an alternative mode of apex binding has been sought. Here, we isolated a lineage of Env apex-directed neutralizing antibodies, N90-VRC38.01-11, by using virus-like particles and conformationally stabilized Env trimers as B cell probes. A crystal structure of N90-VRC38.01 with a scaffolded V1V2 revealed a binding mode involving side-chain-to-side-chain interactions that reduced the distance the antibody loop must traverse the glycan shield, thereby facilitating V1V2 binding via a non-protruding loop. The N90-VRC38 lineage thus identifies a solution for V1V2-apex binding that provides a more conventional B cell pathway for vaccine design.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo
8.
J Virol ; 98(4): e0119023, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501840

RESUMO

Topically applied microbicides may play a critical role in preventing sexual transmission of human immunodeficiency virus type 1 (HIV-1); however, their efficacy can be compromised by amyloid fibrils present in semen, which significantly increase HIV-1 infectivity. This phenomenon may have contributed to the failure of most microbicide candidates in clinical settings. Understanding the impact of semen on microbicide effectiveness is thus crucial. In our study, we evaluated the influence of semen on the neutralizing activity of broadly neutralizing antibodies (bNAbs), including PG16, PGT121, 10-1074, 3BNC117, and VRC01, which are potential microbicide candidates. We found that semen enhances infection of HIV-1 transmitted/founder viruses but only marginally affects the neutralizing activity of tested antibodies, suggesting their potential for microbicide application. Our findings underscore the need to consider semen-mediated enhancement when evaluating and developing microbicides and highlight the potential of incorporating HIV-1 bNAbs in formulations to enhance efficacy and mitigate HIV-1 transmission during sexual encounters.IMPORTANCEThis study examined the impact of semen on the development of microbicides, substances used to prevent the transmission of HIV-1 during sexual activity. Semen contains certain components that can render the virus more infectious, posing a challenge to microbicide effectiveness. Researchers specifically investigated the effect of semen on a group of powerful antibodies called broadly neutralizing antibodies, which can neutralize a large spectrum of different HIV-1 variants. The results revealed that semen only had a minimal effect on the antibodies' ability to neutralize the virus. This is promising because it suggests that these antibodies could still be effective in microbicides, even in the presence of semen. Understanding this interaction is crucial for developing better strategies to prevent HIV-1 transmission. By incorporating the knowledge gained from this study, scientists can now focus on creating microbicides that consider the impact of semen, bringing us closer to more effective prevention methods.


Assuntos
Anti-Infecciosos , Infecções por HIV , HIV-1 , Sêmen , Humanos , Anti-Infecciosos/farmacologia , Anticorpos Neutralizantes , Antivirais/farmacologia , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Anti-HIV , Infecções por HIV/transmissão , HIV-1/fisiologia , Sêmen/química , Sêmen/virologia
9.
J Virol ; 98(9): e0013724, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39136461

RESUMO

Nucleoside-modified mRNA technology has revolutionized vaccine development with the success of mRNA COVID-19 vaccines. We used modified mRNA technology for the design of envelopes (Env) to induce HIV-1 broadly neutralizing antibodies (bnAbs). However, unlike SARS-CoV-2 neutralizing antibodies that are readily made, HIV-1 bnAb induction is disfavored by the immune system because of the rarity of bnAb B cell precursors and the cross-reactivity of bnAbs targeting certain Env epitopes with host molecules, thus requiring optimized immunogen design. The use of protein nanoparticles (NPs) has been reported to enhance B cell germinal center responses to HIV-1 Env. Here, we report our experience with the expression of Env-ferritin NPs compared with membrane-bound Env gp160 when encoded by modified mRNA. We found that well-folded Env-ferritin NPs were a minority of the protein expressed by an mRNA design and were immunogenic at 20 µg but minimally immunogenic in mice at 1 µg dose in vivo and were not expressed well in draining lymph nodes (LNs) following intramuscular immunization. In contrast, mRNA encoding gp160 was more immunogenic than mRNA encoding Env-NP at 1 µg dose and was expressed well in draining LN following intramuscular immunization. Thus, analysis of mRNA expression in vitro and immunogenicity at low doses in vivo are critical for the evaluation of mRNA designs for optimal immunogenicity of HIV-1 immunogens.IMPORTANCEAn effective HIV-1 vaccine that induces protective antibody responses remains elusive. We have used mRNA technology for designs of HIV-1 immunogens in the forms of membrane-bound full-length envelope gp160 and envelope ferritin nanoparticle. Here, we demonstrated in a mouse model that the membrane-bound form induced a better response than envelope ferritin nanoparticle because of higher in vivo protein expression. The significance of our research is in highlighting the importance of analysis of mRNA design expression and low-dose immunogenicity studies for HIV-1 immunogens before moving to vaccine clinical trials.


Assuntos
Ferritinas , HIV-1 , Nanopartículas , Animais , HIV-1/imunologia , HIV-1/genética , Camundongos , Ferritinas/imunologia , Ferritinas/genética , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Anticorpos Anti-HIV/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Camundongos Endogâmicos BALB C , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Imunogenicidade da Vacina , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia
10.
J Virol ; 98(3): e0172023, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38412036

RESUMO

The rational design of HIV-1 immunogens to trigger the development of broadly neutralizing antibodies (bNAbs) requires understanding the viral evolutionary pathways influencing this process. An acute HIV-1-infected individual exhibiting >50% plasma neutralization breadth developed neutralizing antibody specificities against the CD4-binding site (CD4bs) and V1V2 regions of Env gp120. Comparison of pseudoviruses derived from early and late autologous env sequences demonstrated the development of >2 log resistance to VRC13 but not to other CD4bs-specific bNAbs. Mapping studies indicated that the V3 and CD4-binding loops of Env gp120 contributed significantly to developing resistance to the autologous neutralizing response and that the CD4-binding loop (CD4BL) specifically was responsible for the developing resistance to VRC13. Tracking viral evolution during the development of this cross-neutralizing CD4bs response identified amino acid substitutions arising at only 4 of 11 known VRC13 contact sites (K282, T283, K421, and V471). However, each of these mutations was external to the V3 and CD4BL regions conferring resistance to VRC13 and was transient in nature. Rather, complete resistance to VRC13 was achieved through the cooperative expression of a cluster of single amino acid changes within and immediately adjacent to the CD4BL, including a T359I substitution, exchange of a potential N-linked glycosylation (PNLG) site to residue S362 from N363, and a P369L substitution. Collectively, our data characterize complex HIV-1 env evolution in an individual developing resistance to a VRC13-like neutralizing antibody response and identify novel VRC13-associated escape mutations that may be important to inducing VRC13-like bNAbs for lineage-based immunogens.IMPORTANCEThe pursuit of eliciting broadly neutralizing antibodies (bNAbs) through vaccination and their use as therapeutics remains a significant focus in the effort to eradicate HIV-1. Key to our understanding of this approach is a more extensive understanding of bNAb contact sites and susceptible escape mutations in HIV-1 envelope (env). We identified a broad neutralizer exhibiting VRC13-like responses, a non-germline restricted class of CD4-binding site antibody distinct from the well-studied VRC01-class. Through longitudinal envelope sequencing and Env-pseudotyped neutralization assays, we characterized a complex escape pathway requiring the cooperative evolution of four amino acid changes to confer complete resistance to VRC13. This suggests that VRC13-class bNAbs may be refractory to rapid escape and attractive for therapeutic applications. Furthermore, the identification of longitudinal viral changes concomitant with the development of neutralization breadth may help identify the viral intermediates needed for the maturation of VRC13-like responses and the design of lineage-based immunogens.


Assuntos
Anticorpos Amplamente Neutralizantes , Infecções por HIV , Humanos , Aminoácidos , Anticorpos Amplamente Neutralizantes/imunologia , Antígenos CD4/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Epitopos , Anticorpos Anti-HIV , Antígenos HIV , Proteína gp120 do Envelope de HIV/genética , Soropositividade para HIV , HIV-1/genética , Vacinas contra a AIDS/imunologia
11.
Clin Infect Dis ; 76(6): 1136-1141, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36303321

RESUMO

In this viewpoint, we briefly review the status of antiretroviral therapy (ART), its unmet needs, and the role that broadly neutralizing antibodies (bNAbs) might have in the near future for the treatment of human immunodeficiency virus (HIV). We summarize advances in the development of bNAbs as antiretroviral therapy, the results of main clinical trials of bNAbs for HIV treatment and prevention, and its role in cure trials. The limitations of broadly neutralizing antibodies are the current need for primary resistance testing, the still unclear number of antibodies that must be combined, the lack of penetration in anatomical reservoirs, and the role they might play in cure studies. We compare the advantages and disadvantages of "classical ART" and therapy based on broadly neutralizing antibodies. We conclude that broadly neutralizing antibodies still need considerable improvements before they can be considered an alternative to classical ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico
12.
J Med Virol ; 95(2): e28440, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36573441

RESUMO

Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Monoclonais , Anticorpos Amplamente Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
13.
J Infect Dis ; 224(11): 1916-1924, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009371

RESUMO

BACKGROUND: Perinatal human immunodeficiency virus type 1 (HIV-1) continues to occur due to barriers to effective antiretroviral prevention that might be mitigated by long-acting broadly neutralizing monoclonal antibodies (bNAbs). METHODS: An extended half-life bNAb, VRC01LS, was administered subcutaneously at 80 mg/dose after birth to HIV-1-exposed, nonbreastfed (cohort 1, n = 10) and breastfed (cohort 2, n = 11) infants. Cohort 2 received a second dose (100 mg) at 12 weeks. All received antiretroviral prophylaxis. VRC01LS levels were compared to VRC01 levels determined in a prior cohort. RESULTS: Local reactions (all grade ≤2) occurred in 67% and 20% after dose 1 and dose 2, respectively. The weight-banded dose (mean 28.8 mg/kg) of VRC01LS administered subcutaneously achieved a mean (standard deviation) plasma level of 222.3 (71.6) µg/mL by 24 hours and 44.0 (11.6) µg/mL at week 12, prior to dose 2. The preestablished target of ≥50 µg/mL was attained in 95% and 32% at weeks 8 and 12, respectively. The terminal half-life was 37-41 days. VRC01LS level after 1 dose was significantly greater (P <.002) than after a VRC01 dose (20 mg/kg). No infants acquired HIV-1. CONCLUSIONS: VRC01LS was well tolerated with pharmacokinetics that support further studies of more potent long-acting bNAbs as adjunct treatment with antiretrovirals to prevent infant HIV-1 transmission.


Assuntos
Antirretrovirais/administração & dosagem , Anticorpos Monoclonais/farmacocinética , Anticorpos Amplamente Neutralizantes/farmacologia , Anticorpos Anti-HIV , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Antirretrovirais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Amplamente Neutralizantes/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Anticorpos Anti-HIV/administração & dosagem , Anticorpos Anti-HIV/efeitos adversos , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , HIV-1/patogenicidade , Meia-Vida , Humanos , Recém-Nascido , Masculino
14.
J Biol Chem ; 295(21): 7179-7192, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32299914

RESUMO

The E2 glycoprotein of hepatitis C virus (HCV) is the major target of broadly neutralizing antibodies (bNAbs) that are critical for the efficacy of a prophylactic HCV vaccine. We previously showed that a cell culture-derived, disulfide-linked high-molecular-weight (HMW) form of the E2 receptor-binding domain lacking three variable regions, Δ123-HMW, elicits broad neutralizing activity against the seven major genotypes of HCV. A limitation to the use of this antigen is that it is produced only at low yields and does not have a homogeneous composition. Here, we employed a sequential reduction and oxidation strategy to efficiently refold two high-yielding monomeric E2 species, D123 and a disulfide-minimized version (D123A7), into disulfide-linked HMW-like species (Δ123r and Δ123A7r). These proteins exhibited normal reactivity to bNAbs with continuous epitopes on the neutralizing face of E2, but reduced reactivity to conformation-dependent bNAbs and nonneutralizing antibodies (non-NAbs) compared with the corresponding monomeric species. Δ123r and Δ123A7r recapitulated the immunogenic properties of cell culture-derived D123-HMW in guinea pigs. The refolded antigens elicited antibodies that neutralized homologous and heterologous HCV genotypes, blocked the interaction between E2 and its cellular receptor CD81, and targeted the AS412, AS434, and AR3 domains. Of note, antibodies directed to epitopes overlapping with those of non-NAbs were absent. The approach to E2 antigen engineering outlined here provides an avenue for the development of preventive HCV vaccine candidates that induce bNAbs at higher yield and lower cost.


Assuntos
Glicoproteínas/imunologia , Hepacivirus/imunologia , Antígenos de Hepatite/imunologia , Imunogenicidade da Vacina , Mutação de Sentido Incorreto , Vacinas contra Hepatite Viral/imunologia , Proteínas Virais/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Glicoproteínas/genética , Cobaias , Hepacivirus/genética , Anticorpos Anti-Hepatite/imunologia , Antígenos de Hepatite/genética , Humanos , Vacinas contra Hepatite Viral/genética , Proteínas Virais/genética
15.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852781

RESUMO

Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism.IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Mutação , Antagonistas do Receptor Purinérgico P2X/farmacologia , Internalização do Vírus/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/patologia , HIV-1/genética , Humanos
16.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842322

RESUMO

HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19 years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of lengths among the 6,112 Env sequences in the Los Alamos National Laboratory online database. Furthermore, it included two additional N-glycosylation sites and a pair of cysteines suggestive of an extra disulfide loop. Virus with this Env retained good infectivity and replicative capacity; however, analysis of recombinant viruses suggested that other sequences in Env were adapted to accommodate the unusual V1 domain. While the long V1 domain did not confer resistance to neutralization by monoclonal antibodies of the V1/V2-glycan-dependent class, it did confer resistance to neutralization by monoclonal antibodies of the V3-glycan-dependent class. Our findings support results in the literature that suggest a role for long V1 regions in shielding HIV-1 from recognition by V3-directed broadly neutralizing antibodies. In the case of the elite controller described here, it seems likely that selective pressures from the humoral immune system were responsible for driving the highly unusual polymorphisms present in this HIV-1 Envelope.IMPORTANCE Elite controllers have long provided an avenue for researchers to reveal mechanisms underlying control of HIV-1. While the role of host genetic factors in facilitating elite control is well known, the possibility of infection by attenuated strains of HIV-1 has been much less studied. Here we describe an unusual viral feature found in an elite controller of HIV-1 infection and demonstrate its role in conferring escape from monoclonal antibodies of the V3-glycan class. Our results suggest that extreme variation may be needed by HIV-1 to escape neutralization by some antibody specificities.


Assuntos
Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Fragmentos de Peptídeos/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Evasão da Resposta Imune/imunologia , Testes de Neutralização , Fragmentos de Peptídeos/imunologia , Polissacarídeos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
17.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209173

RESUMO

Efforts to cure human immunodeficiency virus (HIV) infection are obstructed by reservoirs of latently infected CD4+ T cells that can reestablish viremia. HIV-specific broadly neutralizing antibodies (bNAbs), defined by unusually wide neutralization breadths against globally diverse viruses, may contribute to the elimination of these reservoirs by binding to reactivated cells, thus targeting them for immune clearance. However, the relationship between neutralization of reservoir isolates and binding to corresponding infected primary CD4+ T cells has not been determined. Thus, the extent to which neutralization breadths and potencies can be used to infer the corresponding parameters of infected cell binding is currently unknown. We assessed the breadths and potencies of bNAbs against 36 viruses reactivated from peripheral blood CD4+ T cells from antiretroviral (ARV)-treated HIV-infected individuals by using paired neutralization and infected cell binding assays. Single-antibody breadths ranged from 0 to 64% for neutralization (80% inhibitory concentration [IC80] of ≤10 µg/ml) and from 0 to 89% for binding, with two-antibody combinations (results for antibody combinations are theoretical/predicted) reaching levels of 0 to 83% and 50 to 100%, respectively. Infected cell binding correlated with virus neutralization for 10 of 14 antibodies (e.g., for 3BNC117, r = 0.82 and P < 0.0001). Heterogeneity was observed, however, with a lack of significant correlation for 2G12, CAP256.VRC26.25, 2F5, and 4E10. Our results provide guidance on the selection of bNAbs for interventional cure studies, both by providing a direct assessment of intra- and interindividual variabilities in neutralization and infected cell binding in a novel cohort and by defining the relationships between these parameters for a panel of bNAbs.IMPORTANCE Although antiretroviral therapies have improved the lives of people who are living with HIV, they do not cure infection. Efforts are being directed towards harnessing the immune system to eliminate the virus that persists, potentially resulting in virus-free remission without medication. HIV-specific antibodies hold promise for such therapies owing to their ability to both prevent the infection of new cells (neutralization) and direct the killing of infected cells. We isolated 36 HIV strains from individuals whose virus was suppressed by medication and tested 14 different antibodies for neutralization of these viruses and for binding to cells infected with the same viruses (critical for engaging natural killer cells). For both neutralization and infected cell binding, we observed variation both between individuals and amongst different viruses within an individual. For most antibodies, neutralization activity correlated with infected cell binding. These data provide guidance on the selection of antibodies for clinical trials.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Viremia/imunologia , Adulto , Citotoxicidade Celular Dependente de Anticorpos , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Viremia/virologia
18.
Retrovirology ; 15(1): 66, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285769

RESUMO

Vectored gene delivery of HIV-1 broadly neutralizing antibodies (bNAbs) using recombinant adeno-associated virus (rAAV) is a promising alternative to conventional vaccines for preventing new HIV-1 infections and for therapeutically suppressing established HIV-1 infections. Passive infusion of single bNAbs has already shown promise in initial clinical trials to temporarily decrease HIV-1 load in viremic patients, and to delay viral rebound from latent reservoirs in suppressed patients during analytical treatment interruptions of antiretroviral therapy. Long-term, continuous, systemic expression of such bNAbs could be achieved with a single injection of rAAV encoding antibody genes into muscle tissue, which would bypass the challenges of eliciting such bNAbs through traditional vaccination in naïve patients, and of life-long repeated passive transfers of such biologics for therapy. rAAV delivery of single bNAbs has already demonstrated protection from repeated HIV-1 vaginal challenge in humanized mouse models, and phase I clinical trials of this approach are underway. Selection of which individual, or combination of, bNAbs to deliver to counter pre-existing resistance and the rise of escape mutations in the virus remains a challenge, and such choices may differ depending on use of this technology for prevention versus therapy.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Dependovirus/genética , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Passiva
19.
Curr HIV/AIDS Rep ; 13(1): 31-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26841901

RESUMO

Passive transfer of antibodies has long been considered a potential treatment modality for infectious diseases, including HIV. Early efforts to use antibodies to suppress HIV replication, however, were largely unsuccessful, as the antibodies that were studied neutralized only a relatively narrow spectrum of viral strains and were not very potent. Recent advances have led to the discovery of a large portfolio of human monoclonal antibodies that are broadly neutralizing across many HIV-1 subtypes and are also substantially more potent. These antibodies target multiple different epitopes on the HIV envelope, thus allowing for the development of antibody combinations. In this review, we discuss the application of broadly neutralizing antibodies (bNAbs) for HIV treatment and HIV eradication strategies. We highlight bNAbs that target key epitopes, such as the CD4 binding site and the V2/V3-glycan-dependent sites, and we discuss several bNAbs that are currently in the clinical development pipeline.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Sítios de Ligação/imunologia , Epitopos/imunologia , Infecções por HIV/terapia , Humanos , Imunoterapia Adotiva/métodos
20.
Adv Sci (Weinh) ; 11(26): e2309268, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704686

RESUMO

Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Camelídeos Americanos , HIV-1 , Animais , HIV-1/imunologia , Humanos , Anticorpos Biespecíficos/imunologia , Camelídeos Americanos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa