Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Immunol ; 50: 101426, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257234

RESUMO

In the last decade there have been some significant advances in vaccine adjuvants, particularly in relation to their inclusion in licensed products. This was proceeded by several decades in which such advances were very scarce, or entirely absent, but several novel adjuvants have now been included in licensed products, including in the US. These advances have relied upon several key technological insights that have emerged in this time period, which have finally allowed an in depth understanding of how adjuvants work. These advances include developments in systems biology approaches which allow the hypotheses first advanced in pre-clinical studies to be critically evaluated in human studies. This review highlights these recent advances, both in relation to the adjuvants themselves, but also the technologies that have enabled their successes. Moreover, we critically appraise what will come next, both in terms of new adjuvant molecules, and the technologies needed to allow them to succeed. We confidently predict that additional adjuvants will emerge in the coming years that will reach approval in licensed products, but that the components might differ significantly from those which are currently used. Gradually, the natural products that were originally used to build adjuvants, since they were readily available at the time of initial development, will come to be replaced by synthetic or biosynthetic materials, with more appealing attributes, including more reliable and robust supply, along with reduced heterogeneity. The recent advance in vaccine adjuvants is timely, given the need to create novel vaccines to deal with the COVID-19 pandemic. Although, we must ensure that the rigorous safety evaluations that allowed the current adjuvants to advance are not 'short-changed' in the push for new vaccines to meet the global challenge as quickly as possible, we must not jeopardize what we have achieved, by pushing less established technologies too quickly, if the data does not fully support it.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Compostos de Alúmen/farmacologia , COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2/imunologia , Biologia de Sistemas , Vacinologia/métodos
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34353890

RESUMO

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , COVID-19/imunologia , COVID-19/terapia , Inibidores Enzimáticos/farmacologia , Elastase de Leucócito/antagonistas & inibidores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , COVID-19/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Elastase de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/imunologia , Suínos , Células Th1/imunologia , Tratamento Farmacológico da COVID-19
3.
Semin Immunol ; 39: 22-29, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30366662

RESUMO

Lipopolysaccharide (LPS) is a well-defined agonist of Toll-like receptor (TLR) 4 that activates innate immune responses and influences the development of the adaptive response during infection with Gram-negative bacteria. Many years ago, Dr. Edgar Ribi separated the adjuvant activity of LPS from its toxic effects, an effort that led to the development of monophosphoryl lipid A (MPL). MPL, derived from Salmonella minnesota R595, has progressed through clinical development and is now used in various product-enabling formulations to support the generation of antigen-specific responses in several commercial and preclinical vaccines. We have generated several synthetic lipid A molecules, foremost glucopyranosyl lipid adjuvant (GLA) and second-generation lipid adjuvant (SLA), and have advanced these to clinical trial for various indications. In this review we summarize the potential and current positioning of TLR4-based adjuvant formulations in approved and emerging vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Glucosídeos/farmacologia , Imunogenicidade da Vacina , Lipídeo A/análogos & derivados , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/química , Compostos de Alúmen/química , Animais , Glucosídeos/química , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmaniose/prevenção & controle , Hanseníase/imunologia , Hanseníase/parasitologia , Hanseníase/prevenção & controle , Lipídeo A/química , Lipídeo A/farmacologia , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Malária/imunologia , Malária/parasitologia , Malária/prevenção & controle , Camundongos , Esquistossomose/imunologia , Esquistossomose/parasitologia , Esquistossomose/prevenção & controle , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/microbiologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas/administração & dosagem , Vacinas/química , Vacinas/imunologia
4.
PLoS Pathog ; 15(12): e1008121, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31794588

RESUMO

The ALVAC-HIV clade B/AE and equivalent SIV-based/gp120 + Alum vaccines successfully decreased the risk of virus acquisition in humans and macaques. Here, we tested the efficacy of HIV clade B/C ALVAC/gp120 vaccine candidates + MF59 or different doses of Aluminum hydroxide (Alum) against SHIV-Cs of varying neutralization sensitivity in macaques. Low doses of Alum induced higher mucosal V2-specific IgA that increased the risk of Tier 2 SHIV-C acquisition. High Alum dosage, in contrast, elicited serum IgG to V2 that correlated with a decreased risk of Tier 1 SHIV-C acquisition. MF59 induced negligible mucosal antibodies to V2 and an inflammatory profile with blood C-reactive Protein (CRP) levels correlating with neutralizing antibody titers. MF59 decreased the risk of Tier 1 SHIV-C acquisition. The relationship between vaccine efficacy and the neutralization profile of the challenge virus appear to be linked to the different immunological spaces created by MF59 and Alum via CXCL10 and IL-1ß, respectively.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Anticorpos Neutralizantes/imunologia , Vacinas contra a SAIDS/química , Vacinas contra a SAIDS/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Infecções por HIV , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Vacinas Virais/química , Vacinas Virais/imunologia
5.
J Proteome Res ; 19(1): 269-278, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31625748

RESUMO

Alum has been widely used as an adjuvant for human vaccines; however, the impact of Alum on host metabolism remains largely unknown. Herein, we applied mass spectrometry (MS) (liquid chromatography-MS)-based metabolic and lipid profiling to monitor the effects of the Alum adjuvant on mouse serum at 6, 24, 72, and 168 h post-vaccination. We propose a new strategy termed subclass identification and annotation for metabolomics for class-wise identification of untargeted metabolomics data generated from high-resolution MS. Using this approach, we identified and validated the levels of several lipids in mouse serum that were significantly altered following Alum administration. These lipids showed a biphasic response even 168 h after vaccination. The majority of the lipids were triglycerides (TAGs), where TAGs with long-chain unsaturated fatty acids (FAs) decreased at 24 h and TAGs with short-chain FAs decreased at 168 h. To our knowledge, this is the first report on the impact of human vaccine adjuvant Alum on the host metabolome, which may provide new insights into the mechanism of action of Alum.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Metabolômica/métodos , Triglicerídeos/sangue , Animais , Antígenos de Bactérias/administração & dosagem , Cromatografia Líquida , Feminino , Imunização , Lipídeos/sangue , Espectrometria de Massas , Camundongos Endogâmicos , Reprodutibilidade dos Testes , Fatores de Tempo , Vacinas contra a Tuberculose/farmacologia
6.
Microb Pathog ; 140: 103932, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31857237

RESUMO

Today's, vaccination is the most cost-effective approaches for preventing infectious diseases. In this strategy, adjuvants play an important role. Propolis from honey bee can stimulate the immune system and several studies have shown the modulating effects of Propolis on the immune responses. Here, the adjuvant effects of aqueous and alcoholic extracts of Propolis were studied on the multi-epitope vaccines against HIV-1. A recombinant vaccine against HIV-1 was prepared and BALB/c mice were immunized. subcutaneously on day 0 with 100 µl of candidate vaccine (10 µg) formulated in an alcoholic extract of Propolis. The second group of mice was immunized with the vaccine (10 µg) formulated in aqueous extract of Propolis. Also, candidate vaccine was formulated in Freund's and Alum adjuvants in the third and fourth groups. Experimental mice were immunized three times with two week intervals under the same conditions and suitable control groups. After final injection, lymphocyte proliferation was measured by BrdU method, IL-4 and IFN-γ cytokines, specific total IgG antibodies, IgG1 and IgG2a isotypes were evaluated using ELISA. The results show that the aqueous and alcoholic extracts were able to enhance lymphocyte proliferation, IL-4 and IFN-γ cytokines and antibody responses with dominant IgG1 pattern and comparable to Freund's and Alum adjuvants. It seems that aqueous and alcoholic extracts of Propolis show adjuvant activity and may be useful for vaccine formulation.


Assuntos
Adjuvantes Imunológicos/farmacologia , HIV-1/imunologia , Própole/farmacologia , Compostos de Alúmen/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Adjuvante de Freund/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Sintéticas/imunologia
7.
Eur J Immunol ; 48(4): 705-715, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349774

RESUMO

The effectiveness of many vaccines licensed for clinical use relates to the induction of neutralising antibodies, facilitated by the inclusion of vaccine adjuvants, particularly alum. However, the ability of alum to preferentially promote humoral rather than cellular, particularly Th1-type responses, is not well understood. We demonstrate that alum activates immunosuppressive mechanisms following vaccination, which limit its capacity to induce Th1 responses. One of the key cytokines limiting excessive immune responses is IL-10. Injection of alum primed draining lymph node cells for enhanced IL-10 secretion ex vivo. Moreover, at the site of injection, macrophages and dendritic cells were key sources of IL-10 expression. Alum strongly enhanced the transcription and secretion of IL-10 by macrophages and dendritic cells. The absence of IL-10 signalling did not compromise alum-induced cell infiltration into the site of injection, but resulted in enhanced antigen-specific Th1 responses after vaccination. In contrast to its decisive regulatory role in regulating Th1 responses, there was no significant change in antigen-specific IgG1 antibody production following vaccination with alum in IL-10-deficient mice. Overall, these findings indicate that injection of alum promotes IL-10, which can block Th1 responses and may explain the poor efficacy of alum as an adjuvant for inducing protective Th1 immunity.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Células Dendríticas/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Células Th1/imunologia , Animais , Células Cultivadas , Escherichia coli/imunologia , Feminino , Interleucina-10/biossíntese , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinas/imunologia
8.
J Immunol ; 198(1): 196-204, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27895176

RESUMO

Despite a long history and extensive usage of insoluble aluminum salts (alum) as vaccine adjuvants, the molecular mechanisms underpinning Ag-specific immunity upon vaccination remain unclear. Dendritic cells (DCs) are crucial initiators of immune responses, but little is known about the molecular pathways used by DCs to sense alum and, in turn, activate T and B cells. In this article, we show that alum adjuvanticity requires IL-2 specifically released by DCs, even when T cell secretion of IL-2 is intact. We demonstrate that alum, as well as other sterile particulates, such as uric acid crystals, induces DCs to produce IL-2 following initiation of actin-mediated phagocytosis that leads to Src and Syk kinase activation, Ca2+ mobilization, and calcineurin-dependent activation of NFAT, the master transcription factor regulating IL-2 expression. Using chimeric mice, we show that DC-derived IL-2 is required for maximal Ag-specific proliferation of CD4+ T cells and optimal humoral responses following alum-adjuvanted immunization. These data identify DC-derived IL-2 as a key mediator of alum adjuvanticity in vivo and the Src-Syk pathway as a potential leverage point in the rational design of novel adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Células Dendríticas/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Interleucina-2/imunologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fatores de Transcrição NFATC/imunologia , Transdução de Sinais/efeitos dos fármacos , Quinase Syk/imunologia
9.
Proc Natl Acad Sci U S A ; 113(34): 9587-92, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27482083

RESUMO

The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well.


Assuntos
Caspase 1/genética , Inflamassomos/metabolismo , Corpos de Lewy/metabolismo , Neurônios/metabolismo , Agregados Proteicos/genética , alfa-Sinucleína/genética , Compostos de Alúmen/farmacologia , Caspase 1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Corpos de Lewy/efeitos dos fármacos , Corpos de Lewy/patologia , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nigericina/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Vitamina K 3/farmacologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , para-Aminobenzoatos/farmacologia
10.
Parasite Immunol ; 40(10): e12579, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30107039

RESUMO

Chronic helminth infection with Schistosoma (S.) mansoni protects against allergic airway inflammation (AAI) in mice and is associated with reduced Th2 responses to inhaled allergens in humans, despite the presence of schistosome-specific Th2 immunity. Schistosome eggs strongly induce type 2 immunity and allow to study the dynamics of Th2 versus regulatory responses in the absence of worms. Treatment with isolated S. mansoni eggs by i.p. injection prior to induction of AAI to ovalbumin (OVA)/alum led to significantly reduced AAI as assessed by less BAL and lung eosinophilia, less cellular influx into lung tissue, less OVA-specific Th2 cytokines in lungs and lung-draining mediastinal lymph nodes and less circulating allergen-specific IgG1 and IgE antibodies. While OVA-specific Th2 responses were inhibited, treatment induced a strong systemic Th2 response to the eggs. The protective effect of S. mansoni eggs was unaltered in µMT mice lacking mature (B2) B cells and unaffected by Treg cell depletion using anti-CD25 blocking antibodies during egg treatment and allergic sensitization. Notably, prophylactic egg treatment resulted in a reduced influx of pro-inflammatory, monocyte-derived dendritic cells into lung tissue of allergic mice following challenge. Altogether, S. mansoni eggs can protect against the development of AAI, despite strong egg-specific Th2 responses.


Assuntos
Anticorpos Antiprotozoários/sangue , Asma/prevenção & controle , Óvulo/imunologia , Schistosoma mansoni/imunologia , Alérgenos/imunologia , Compostos de Alúmen/farmacologia , Animais , Anticorpos Antiprotozoários/imunologia , Asma/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Eosinofilia/prevenção & controle , Feminino , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Inflamação/patologia , Subunidade alfa de Receptor de Interleucina-2 , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ovalbumina/farmacologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
11.
J Immunol ; 197(4): 1221-30, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357147

RESUMO

Aluminum salt (alum) adjuvants have been used for many years as adjuvants for human vaccines because they are safe and effective. Despite its widespread use, the means by which alum acts as an adjuvant remains poorly understood. Recently, it was shown that injected alum is rapidly coated with host chromatin within mice. Experiments suggested that the host DNA in the coating chromatin contributed to alum's adjuvant activity. Some of the experiments used commercially purchased DNase and showed that coinjection of these DNase preparations with alum and Ag reduced the host's immune response to the vaccine. In this study, we report that some commercial DNase preparations are contaminated with proteases. These proteases are responsible for most of the ability of DNase preparations to inhibit alum's adjuvant activity. Nevertheless, DNase somewhat reduces responses to some Ags with alum. The effect of DNase is independent of its ability to cleave DNA, suggesting that alum improves CD4 responses to Ag via a pathway other than host DNA sensing.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Desoxirribonucleases , Ativação Linfocitária/imunologia , Vacinas/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , DNA/imunologia , Desoxirribonucleases/química , Desoxirribonucleases/imunologia , Desoxirribonucleases/farmacologia , Contaminação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Ativação Linfocitária/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
12.
Mol Cell Proteomics ; 15(6): 1877-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26933193

RESUMO

Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles, paralleling responses to adjuvant-containing vaccines in vivo Age-specific in vitro modeling coupled with proteomics may provide fresh insight into the ontogeny of adjuvant action thereby informing targeted adjuvanted vaccine development for distinct age groups.


Assuntos
Adjuvantes Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos , Adulto , Fatores Etários , Compostos de Alúmen/farmacologia , Cromatografia Líquida , Humanos , Imidazóis/farmacologia , Imunidade Inata/efeitos dos fármacos , Recém-Nascido , Lipídeo A/análogos & derivados , Lipídeo A/farmacologia , Espectrometria de Massas , Monócitos/metabolismo , Proteoma/efeitos dos fármacos
13.
Exp Parasitol ; 189: 66-71, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29729492

RESUMO

Toxic effects of available therapeutics are major drawbacks for conventional management approaches in parasitic infections. Vaccines have provided a promising opportunity to obviate such unwanted complications. In present study, we examined immune augmenting capacities of an emerging adjuvant, Naltrexone, against Fasciola hepatica infection in BALB/c mice. Seventy BALB/c mice were divided into five experimental groups (14 mice per group) including 1- control (received PBS), 2- vaccine (immunized with F. hepatica E/S antigens), 3- Alum-vaccine (immunized with Alum adjuvant and E/S antigens), 4- NLT-vaccine (immunized with NLT adjuvant and E/S antigens), and 5- Alum-NLT-vaccine (immunized with mixed Alum-NLT adjuvant and E/S antigens). Lymphocyte stimulation index was assessed by MTT assay. Production of IFN-γ, IL-4, IgG2a and IgG1 was assessed by ELISA method. Results showed that NLT, either alone or in combination with alum, can induce immune response toward production of IFN-γ and IgG2a as representatives of Th1 immune response. Also, using this adjuvant in immunization experiment was associated with significantly high proliferative response of splenocytes/lymphocytes. Utilization of mixed Alum-NLT adjuvant revealed the highest protection rate (73.8%) in challenge test of mice infected with F. hepatica. These findings suggest the potential role of NLT as an effective adjuvant in induction of protective cellular and Th1 immune responses against fasciolosis.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Fasciola hepatica/imunologia , Fasciolíase/prevenção & controle , Naltrexona/uso terapêutico , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/administração & dosagem , Compostos de Alúmen/farmacologia , Compostos de Alúmen/uso terapêutico , Animais , Anticorpos Anti-Helmínticos/sangue , Ensaio de Imunoadsorção Enzimática , Fasciola hepatica/efeitos dos fármacos , Fasciolíase/tratamento farmacológico , Fasciolíase/imunologia , Feminino , Imunidade Celular/efeitos dos fármacos , Imunização , Imunoglobulina G/sangue , Interferon gama/análise , Interleucina-4/análise , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Naltrexona/administração & dosagem , Naltrexona/farmacologia , Distribuição Aleatória , Ovinos , Células Th1/efeitos dos fármacos , Vacinas Virais/administração & dosagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-29764286

RESUMO

In this paper the environmental evaluation of the separation process of the microalgal biomass Scenedesmus sp. from full-scale photobioreactors was carried out at the Research and Development Nucleus for Sustainable Energy (NPDEAS), with different flocculants (iron sulfate - FeCl3, sodium hydroxide - NaOH, calcium hydroxide - Ca(OH)2 and aluminum sulphate Al2(SO4)3, by means of the life cycle assessment (LCA) methodology, using the SimaPro 7.3 software. Furthermore, the flocculation efficiency by means of optical density (OD) was also evaluated. The results indicated that FeCl3 and Al2(SO4)3 were highly effective for the recovery of microalgal biomass, greater than 95%. Though, when FeCl3 was used, there was an immediate change in color to the biomass after the orange colored salt was added, typical with the presence of iron, which may compromise the biomass use according to its purpose and Al2(SO4)3 is associated with the occurrence of Alzheimer's disease, restricting the application of biomass recovered through this process for nutritional purposes, for example. Therefore, it was observed that sodium hydroxide is an efficient flocculant, promoting recovery around 93.5% for the ideal concentration of 144 mg per liter. It had the best environmental profile among the compared flocculant agents, since it did not cause visible changes in the biomass or compromise its use and had less impact in relation to acidification, eutrophication, global warming and human toxicity, among others. Thus, the results indicate that it is important to consider both flocculation efficiency aspects and environmental impacts to identify the best flocculants on an industrial scale, to optimize the process, with lower amount of flocculant and obtain the maximum biomass recovery and decrease the impact on the extraction, production, treatment and reuse of these chemical compounds to the environment. However, more studies are needed in order to evaluate energy efficiency of the process coupled with other microalgal biomass recovery technologies. In addition, studies with natural flocculants, other polymers and changes in pH are also needed, as these are produced in a more sustainable way than synthetic organic polymers and have the potential to generate a biomass free of undesirable contaminants.


Assuntos
Técnicas de Cultura Celular por Lotes , Biomassa , Meio Ambiente , Microalgas/química , Fotobiorreatores , Scenedesmus/química , Compostos de Alúmen/química , Compostos de Alúmen/farmacologia , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Poluentes Ambientais/isolamento & purificação , Reutilização de Equipamento , Floculação/efeitos dos fármacos , Química Verde/métodos , Humanos , Microalgas/efeitos dos fármacos , Fotobiorreatores/microbiologia , Scenedesmus/efeitos dos fármacos , Hidróxido de Sódio/química , Hidróxido de Sódio/farmacologia
15.
Eur J Immunol ; 46(4): 1004-10, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27062120

RESUMO

Neutrophils express pattern recognition receptors (PRRs) and regulate immune responses via PRR-dependent cytokine production. An emerging theme is that neutrophil PRRs often exhibit cell type-specific adaptations in their signalling pathways. This prompted us to examine inflammasome signalling by the PRR NLRP3 in murine neutrophils, in comparison to well-established NLRP3 signalling pathways in macrophages. Here, we demonstrate that while murine neutrophils can indeed signal via the NLRP3 inflammasome, neutrophil NLRP3 selectively responds to soluble agonists but not to the particulate/crystalline agonists that trigger NLRP3 activation in macrophages via phagolysosomal rupture. In keeping with this, alum did not trigger IL-1ß production from human PMN, and the lysosomotropic peptide Leu-Leu-OMe stimulated only weak NLRP3-dependent IL-1ß production from murine neutrophils, suggesting that lysosomal rupture is not a strong stimulus for NLRP3 activation in neutrophils. We validated our in vitro findings for poor neutrophil NLRP3 responses to particles in vivo, where we demonstrated that neutrophils do not significantly contribute to alum-induced IL-1ß production in mice. In all, our studies highlight that myeloid cell identity and the nature of the danger signal can strongly influence signalling by a single PRR, thus shaping the nature of the resultant immune response.


Assuntos
Proteínas de Transporte/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Compostos de Alúmen/farmacologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Dipeptídeos/farmacologia , Humanos , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite/induzido quimicamente , Peritonite/imunologia , Transdução de Sinais/imunologia
16.
Clin Exp Rheumatol ; 35(5): 735-738, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850023

RESUMO

OBJECTIVES: Pentraxin 3 (PTX3) is a multifunctional soluble factor. PTX3 can be involved in the regulation of vasculitis and is expressed in the cytoplasm of neutrophils. As anti-neutrophil cytoplasmic antibody (ANCA) is recognised as a cause of vasculitis, we aimed to discover the role of PTX3 in ANCA production in vivo. METHODS: To this end, we used aluminum salt (alum), which induces neutrophil extracellular traps, as an adjuvant for producing anti-myeloperoxidase-ANCA (MPO-ANCA). Specifically, we intraperitoneally injected alum and recombinant MPO (rMPO) into MPO-deficient mice and then measured the concentration of anti-MPO IgG in their blood. To show the involvement of extracellular PTX3 in this model, we assessed PTX3 protein content and host double-stranded DNA levels in the mice's peritoneal fluid after alum injection. In addition, we simultaneously administered recombinant PTX3, rMPO and alum to MPO-deficient mice to assess the function of PTX3 in producing anti-MPO IgG in vivo. RESULTS: Anti-MPO IgG was produced by the alum + rMPO immunisation model in MPO-deficient but not wildtype mice. Injection of alum induced extracellular PTX3 as well as double-stranded DNA and dead cells in MPO-deficient mice. Simultaneous injection of recombinant PTX3 with rMPO and alum attenuated the production of anti-MPO IgG in MPO-deficient mice. CONCLUSIONS: Our current findings provide evidence that PTX3 attenuates the production of murine MPO-ANCA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Anticorpos Anticitoplasma de Neutrófilos/sangue , Proteína C-Reativa/imunologia , Imunoglobulina G/sangue , Erros Inatos do Metabolismo/imunologia , Proteínas do Tecido Nervoso/imunologia , Peroxidase/imunologia , Animais , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/metabolismo , DNA/imunologia , DNA/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Masculino , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/administração & dosagem , Proteínas do Tecido Nervoso/metabolismo , Peroxidase/administração & dosagem , Peroxidase/deficiência , Peroxidase/genética
17.
BMC Infect Dis ; 17(1): 19, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056837

RESUMO

BACKGROUND: A widely prevalent disease, toxoplasmosis poses serious health threats to both humans and animals; therefore, development of an ideal DNA vaccine against Toxoplasma gondii is needed eagerly. The purpose of the present study is to assess the protective efficacy of a DNA vaccine encoding the T. gondii toxofilin gene (pEGFP-toxofilin). In addition, toxofilin DNA vaccine combined with the individual adjuvants, alum or monophosphoryl lipid A (MPLA), or a mixture of alum-MPLA adjuvant were screened for their ability to enhance antibody responses. METHODS: Using bioinformatics, we analyzed the gene and amino acid sequences of the toxofilin protein, recognizing and identifying several potential linear B and T helper (Th)-1 cell epitopes. BALB/c mice were immunized three times with either toxofilin DNA vaccine alone or in combination with the adjuvants such as alum, MPLA or an alum-MPLA mixture. The systemic immune response was evaluated by cytokine, the percentage of CD4 (+) and CD8 (+) T cells and specific antibody measurement. Two weeks after the last immunization, protective efficacy was evaluated by challenging intraperitoneally with 1 × 104 tachyzoites of T. gondii or intragastrically with 20 cysts of T. gondii PRU strain. RESULTS: All experimentally immunized mice developed strong humoral and cellular immune responses compared with the control groups. Moreover, by comparison with the non-adjuvant toxofilin DNA vaccine group, adding alum adjuvant to toxofilin DNA vaccine resulted in an increase in humoral response and a skewed Th2 response. However, the MPLA adjuvant with toxofilin DNA vaccine induced significantly enhanced humoral and Th1-biased immune responses. Importantly, the co-administration of alum-MPLA adjuvant in combination with the toxofilin DNA vaccine shifted the Th2 immune response to a Th1 response compared with the alum-toxofilin group, and elicited the strongest humoral and Th1 responses among all the groups. At the same time, a longer survival time and less cyst amounts against T. gondii infection were also observed in the alum-MPLA-toxofilin group in comparison with single or no adjuvant groups. CONCLUSIONS: Toxoplasma gondii toxofilin is a promising vaccine candidate that warrants further development. Co-administration of the alum-MPLA adjuvant mixture with DNA vaccine could effectively enhance immunogenicity and strongly skew the cellular immune response towards a Th1 phenotype.


Assuntos
Proteínas de Capeamento de Actina/genética , Adjuvantes Imunológicos/farmacologia , Lipídeo A/análogos & derivados , Proteínas de Protozoários/genética , Vacinas Protozoárias/farmacologia , Toxoplasmose/imunologia , Proteínas de Capeamento de Actina/imunologia , Compostos de Alúmen/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Feminino , Imunidade Celular , Lipídeo A/imunologia , Lipídeo A/farmacologia , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/prevenção & controle , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
18.
J Immunol ; 194(11): 5069-76, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25911756

RESUMO

Aluminum salt (alum) has been widely used for vaccinations as an adjuvant. Alum not only enhances immunogenicity but also induces Th2 cell immune responses. However, the mechanisms of how alum enhances Th2 cell immune responses have been controversial. In an experimental allergic airway inflammation model, in which alum in conjunction with OVA Ag was i.p. injected for immunization, we found that apoptotic cells and inflammatory dendritic cells (iDC) expressing CD300a, an inhibitory immunoreceptor for phosphatidylserine (PS), significantly increased in number in the peritoneal cavity after the immunization. In contrast, apoptotic cells and iDCs were scarcely observed in the peritoneal cavity after injection of OVA alone. In CD300a-deficient mice, eosinophil infiltration in bronchoalveolar lavage fluid, serum IgE levels, and airway hyperreactivity were significantly decreased after immunization with alum plus OVA compared with wild-type mice. In vitro, iDCs purified from CD300a-deficient mice after the immunization induced significantly less IL-4 production from OT-II naive CD4(+) T cells after coculture with OVA Ag. CD300a expressed on iDCs bound PS on apoptotic cells in the peritoneal cavity after injection of OVA plus alum. Blocking CD300a interaction with PS by injection of a neutralizing anti-CD300a Ab resulted in inhibition of the development of allergic airway inflammation. These results suggest that CD300a is involved in alum-induced Th2 skewing.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Ovalbumina/farmacologia , Receptores Imunológicos/imunologia , Hipersensibilidade Respiratória/imunologia , Células Th2/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Apoptose/imunologia , Asma/genética , Asma/imunologia , Asma/terapia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Dendríticas/imunologia , Eosinófilos/imunologia , Imunoglobulina E/sangue , Inflamação/imunologia , Interleucina-4/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilserinas/antagonistas & inibidores , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/prevenção & controle
19.
Chem Senses ; 41(7): 601-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27252355

RESUMO

Astringents (alum, malic acid, tannic acid) representing 3 broad classes (multivalent salts, organic acids, and polyphenols) were characterized alone, and as 2- and 3-component mixtures using isoboles. In experiment 1, participants rated 7 attributes ("astringency," the sub-qualities "drying," "roughing," and "puckering," and the side tastes "bitterness," "sourness," and "sweetness") using direct scaling. Quality specific power functions were calculated for each stimulus. In experiment 2, the same participants characterized 2- and 3-component mixtures. Multiple factor analysis (MFA) and hierarchical clustering on attribute ratings across stimuli indicate "astringency" is highly related to "bitterness" as well as "puckering," and the subqualities "drying" and "roughing" are somewhat redundant. Moreover, power functions were used to calculate indices of interaction (I) for each attribute/mixture combination. For "astringency," there was evidence of antagonism, regardless of the type of mixture. Conversely, for subqualities, the pattern of interaction depended on the mixture type. Alum/tannic acid and tannic acid/malic acid mixtures showed evidence of synergy for "drying" and "roughing"; alum/malic acid mixtures showed evidence of antagonism for "drying," "roughing," and "puckering." Collectively, these data clarify some semantic ambiguity regarding astringency and its subqualities, as well as the nature of interactions of among different types of astringents. Present data are not inconsistent with the idea that astringency arises from multiple mechanisms, although it remains to be determined whether the synergy observed here might reflect simultaneous activation of these multiple mechanisms.


Assuntos
Adstringentes/farmacologia , Percepção Gustatória/efeitos dos fármacos , Adolescente , Adulto , Compostos de Alúmen/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Malatos/farmacologia , Masculino , Pessoa de Meia-Idade , Taninos/farmacologia , Paladar , Xerostomia
20.
Biologicals ; 44(5): 367-73, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27427517

RESUMO

Pseudomonas aeruginosa is an important opportunistic human pathogen that causes a wide variety of severe nosocomial infections. Type IV pili of P. aeruginosa are made up of polymerized pilin that aids in bacterial adhesion, biofilm formation and twitching motility. The aim of this study was to evaluate the efficacy of alum and naloxone (alum+NLX) as an adjuvant for P. aeruginosa recombinant PilA (r-PilA) as a vaccine candidate in the improvement of humoral and cellular immunity. Primary immunization with r-PilA in combination with alum+NLX followed by two booster shots was sufficient to generate robust cellular and humoral responses, which were Th1 and Th2 type responses consisting of IgG1 and IgG2a subtypes. Analysis of the cytokine response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by r-PilA. These sera were also able to reduce bacterial load in the lung tissue of challenged mice. The reduction of systemic bacterial spread resulted in increased survival rates in challenged immunized mice. In conclusion, immunization with r-PilA combined with alum+NLX evokes cellular and humoral immune responses, which play an important role in providing protection against acute P. aeruginosa lung infection among immunized mice.


Assuntos
Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/farmacologia , Proteínas de Fímbrias/farmacologia , Naloxona/farmacologia , Pneumonia Bacteriana , Infecções por Pseudomonas , Vacinas contra Pseudomonas/farmacologia , Pseudomonas aeruginosa/imunologia , Doença Aguda , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa