Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 533(7603): 425-8, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27093288

RESUMO

Zika virus (ZIKV), formerly a neglected pathogen, has recently been associated with microcephaly in fetuses, and with Guillian-Barré syndrome in adults. Here we present the 3.7 Å resolution cryo-electron microscopy structure of ZIKV, and show that the overall architecture of the virus is similar to that of other flaviviruses. Sequence and structural comparisons of the ZIKV envelope (E) protein with other flaviviruses show that parts of the E protein closely resemble the neurovirulent West Nile and Japanese encephalitis viruses, while others are similar to dengue virus (DENV). However, the contribution of the E protein to flavivirus pathobiology is currently not understood. The virus particle was observed to be structurally stable even when incubated at 40 °C, in sharp contrast to the less thermally stable DENV. This is also reflected in the infectivity of ZIKV compared to DENV serotypes 2 and 4 (DENV2 and DENV4) at different temperatures. The cryo-electron microscopy structure shows a virus with a more compact surface. This structural stability of the virus may help it to survive in the harsh conditions of semen, saliva and urine. Antibodies or drugs that destabilize the structure may help to reduce the disease outcome or limit the spread of the virus.


Assuntos
Temperatura , Vírion/química , Vírion/ultraestrutura , Zika virus/química , Zika virus/ultraestrutura , Microscopia Crioeletrônica , Vírus da Dengue/química , Vírus da Dengue/classificação , Vírus da Dengue/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/química , Humanos , Modelos Moleculares , Estabilidade Proteica , Saliva/virologia , Sêmen/virologia , Urina/virologia , Proteínas do Envelope Viral/química , Vírion/patogenicidade , Vírus do Nilo Ocidental/química , Zika virus/patogenicidade
2.
Mikrochim Acta ; 188(6): 206, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34046739

RESUMO

A portable surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) detector has been developed for the automatic and highly sensitive detection of West Nile virus (WNV) non-structural protein 1 (NS1) and actual WNV samples. Au@Ag nanoparticles (Au@Ag NPs) labeled with double-layer Raman molecules were used as SERS tags to prepare WNV-specific SERS-LFIA strips. On this platform, the WNV-specific antigen NS1 protein was quantitatively and sensitively detected. The detection limit for the WNV NS1 protein was 0.1 ng/mL, which was 100-fold more sensitive than visual signals. The detection limit for inactivated WNV virions was 0.2 × 102 copies/µL. The sensitivity of the SERS-LFIA detector was comparable to that of the fluorescence quantitative reverse transcription-polymerase chain reaction assay. The prepared SERS-LFIA strips exhibited high sensitivity and good specificity for WNV. Thus, the strips developed herein have clinical application value. Moreover, the portable SERS-LFIA detector enabled automatic and rapid detection of the SERS-LFIA strips. The platform established herein is expected to make a substantial contribution to the diagnosis and control of outbreaks of emerging infectious diseases, including WNV.


Assuntos
Imunoensaio/métodos , Análise Espectral Raman/métodos , Proteínas não Estruturais Virais/análise , Vírus do Nilo Ocidental/química , Anticorpos Imobilizados/imunologia , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Prata/química , Proteínas não Estruturais Virais/imunologia , Febre do Nilo Ocidental/diagnóstico
3.
Anal Chem ; 92(19): 13050-13057, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32854497

RESUMO

Absorbance detection is often prohibited in microfluidic channels due to the limited optical path length available in these systems. However, this optical distance may be significantly increased by guiding the probing light beam along the channel length via multiple reflections by patterned metallic surfaces. In this work, we demonstrate enhanced absorbance detection in glass microfluidic channels using a commercial microplate reader based on this principle, yielding detection limits comparable to that measured on standard microwell plates. This improvement in detectability was realized through careful optimization of the mirror lengths and locations combined with the appropriate design of a microchip holder to suitably position the microchannels in the microplate reader. Additionally, it was determined that the angle by which our device was tilted relative to the horizontal plane played an important role in this optimization. For an optimum choice of parameters accessible with our design, the sensitivity of our absorbance measurements in a 30 µm-deep channel was improved by as much as 52-fold, raising this quantity to about 84% of the corresponding value realized for 75 µL samples placed within 7 mm i.d. standard cylindrical microwells. Quantitative ELISAs employing the absorbance detection method were demonstrated on the noted multireflection microchip device for assessing West Nile viral IgM antibody levels in human serum samples yielding analyte detection limits comparable to that measured on standard microwell plates.


Assuntos
Imunoglobulina M/sangue , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Vírus do Nilo Ocidental/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
4.
Biochem Biophys Res Commun ; 531(4): 522-527, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32807496

RESUMO

Flaviviruses are major emerging human pathogenic viruses that pose a persistent and growing menace to global health. They are enveloped single-stranded RNA viruses with positive polarity transmitted by arthropod vectors like mosquitoes or ticks, responsible for a significant and growing number of human deaths and illnesses. The 5'- and 3'-untranslated regions (UTRs) are highly structured and contain conserved cis-acting RNA elements that participate in viral translation, replication and host adaptation. Despite their role in fiaviviruses replication, few high-resolution structural studies have investigated the RNA elements required for viral replication. Here we report the NMR structures of stem-loop B from WNV and DENV4 viruses. Because this element is required for cyclization of the genome and the activity of the replicative viral enzymes, viral replication rates are sensitive to even small changes in these RNAs. Therefore, this work provides structural insight into a new drug target to reduce flavivirus replication rates.


Assuntos
Vírus da Dengue/química , RNA Viral/química , Vírus do Nilo Ocidental/química , Regiões 5' não Traduzidas , Vírus da Dengue/fisiologia , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Temperatura , Replicação Viral
5.
Protein Expr Purif ; 153: 18-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30125621

RESUMO

Saint Louis encephalitis virus (SLEV) and West Nile virus (WNV) are two of the major causes of arboviral encephalitis in the Americas. The co-circulation of related flaviviruses in the Americas and prior vaccination against flaviviruses pose problems to the diagnostic specificity of serological assays due to the development of cross-reactive antibodies. An accurate diagnosis method capable of differentiating these related viruses is needed. NS1 is a glycosylated, nonstructural protein, of about 46 kDa which has a highly conserved structure. Anti-NS1 antibodies can be detected within 4-8 days after the initial exposure and NS1 is the least cross-reactive of the flaviviral antigens. This study was aimed to generate SLEV and WNV NS1 recombinants proteins for the development of a flavivirus diagnostic test. Local Argentinian isolates were used as the source of NS1 gene cloning, expression, and purification. The protein was expressed in Escherichia coli as inclusion bodies and further purified by metal-chelating affinity chromatography (IMAC) under denaturing conditions. Human sera from SLEV and WNV positive cases showed reactivity to the recombinant NS1 proteins by western blot. The unfolded NS1 proteins were also used as immunogens. The polyclonal antibodies elicited in immunized mice recognized the two recombinant proteins with differential reactivity.


Assuntos
Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Vírus da Encefalite de St. Louis/imunologia , Encefalite de St. Louis/diagnóstico , Proteínas não Estruturais Virais/imunologia , Febre do Nilo Ocidental/diagnóstico , Vírus do Nilo Ocidental/imunologia , Animais , Especificidade de Anticorpos , Antígenos Virais/biossíntese , Antígenos Virais/genética , Argentina , Western Blotting , Cromatografia de Afinidade , Clonagem Molecular , Reações Cruzadas , Diagnóstico Diferencial , Vírus da Encefalite de St. Louis/química , Vírus da Encefalite de St. Louis/genética , Encefalite de St. Louis/imunologia , Encefalite de St. Louis/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Corpos de Inclusão/química , Camundongos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Proteínas não Estruturais Virais/biossíntese , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
6.
Anal Chem ; 90(12): 7777-7783, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29790331

RESUMO

Viral pathogens are a serious health threat around the world, particularly in resource limited settings, where current sensing approaches are often insufficient and slow, compounding the spread and burden of these pathogens. Here, we describe a label-free, point-of-care approach toward detection of virus particles, based on a microfluidic paper-based analytical device with integrated microwire Au electrodes. The device is initially characterized through capturing of streptavidin modified nanoparticles by biotin-modified microwires. An order of magnitude improvement in detection limits is achieved through use of a microfluidic device over a classical static paper-based device, due to enhanced mass transport and capturing of particles on the modified electrodes. Electrochemical impedance spectroscopy detection of West Nile virus particles was carried out using antibody functionalized Au microwires, achieving a detection limit of 10.2 particles in 50 µL of cell culture media. No increase in signal is found on addition of an excess of a nonspecific target (Sindbis). This detection motif is significantly cheaper (∼$1 per test) and faster (∼30 min) than current methods, while achieving the desired selectivity and sensitivity. This sensing motif represents a general platform for trace detection of a wide range of biological pathogens.


Assuntos
Técnicas Eletroquímicas , Papel , Vírion/química , Vírion/isolamento & purificação , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/isolamento & purificação , Ouro/química , Estrutura Molecular
7.
Anal Chem ; 89(1): 862-870, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977168

RESUMO

Interactions between nucleic acids and proteins are critical for many cellular processes, and their study is of utmost importance to many areas of biochemistry, cellular biology, and virology. Here, we introduce a new analytical method based on sedimentation velocity (SV) analytical ultracentrifugation, in combination with a novel multiwavelength detector to characterize such interactions. We identified the stoichiometry and molar mass of a complex formed during the interaction of a West Nile virus RNA stem loop structure with the human T cell-restricted intracellular antigen-1 related protein. SV has long been proven as a powerful technique for studying dynamic assembly processes under physiological conditions in solution. Here, we demonstrate, for the first time, how the new multiwavelength technology can be exploited to study protein-RNA interactions, and show how the spectral information derived from the new detector complements the traditional hydrodynamic information from analytical ultracentrifugation. Our method allows the protein and nucleic acid signals to be separated by spectral decomposition such that sedimentation information from each individual species, including any complexes, can be clearly identified based on their spectral signatures. The method presented here extends to any interacting system where the interaction partners are spectrally separable.


Assuntos
Hidrodinâmica , RNA Viral/análise , Antígeno-1 Intracelular de Células T/análise , Ultracentrifugação , Vírus do Nilo Ocidental/química , Humanos
8.
J Virol ; 88(20): 11726-37, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25078693

RESUMO

Flaviviruses are thought to sample an ensemble of structures at equilibrium. One consequence of a structurally dynamic virion is the observed time-dependent increases in neutralization sensitivity that can occur after prolonged incubation with antibody. Differences in how virus strains "breathe" may affect epitope exposure and contribute to the underlying mechanisms of strain-dependent neutralization sensitivity. Beyond the contribution of structural dynamics, flaviviruses exist as a structurally heterogeneous population due to an inefficient virion maturation process. Here, we investigate the interplay between virion maturation and structural dynamics that contributes to antibody-mediated neutralization. Using West Nile (WNV) and dengue (DENV) viruses produced under conditions that modify the extent of virion maturation, we investigated time-dependent changes in neutralization sensitivity associated with structural dynamics. Our results identify distinct patterns of neutralization against viruses that vary markedly with respect to the extent of virion maturation. Reducing the efficiency of virion maturation resulted in greater time-dependent changes in neutralization potency and a marked reduction in the stability of the particle at 37°C compared to more mature virus. The fact that the neutralization sensitivity of WNV and DENV did not increase after prolonged incubation in the absence of antibody, regardless of virion maturation, suggests that the dynamic processes that govern epitope accessibility on infectious viruses are reversible. Against the backdrop of heterogeneous flavivirus structures, differences in the pathways by which viruses "breathe" represent an additional layer of complexity in understanding maturation state-dependent patterns of antibody recognition. Importance: Flaviviruses exist as a group of related structures at equilibrium that arise from the dynamic motion of E proteins that comprise the antigenic surface of the mature virion. This process has been characterized for numerous viruses and is referred to as viral "breathing." Additionally, flaviviruses are structurally heterogeneous due to an inefficient maturation process responsible for cleaving prM on the virion surface. Both of these mechanisms vary the exposure of antigenic sites available for antibody binding and impact the ability of antibodies to neutralize infection. We demonstrate that virions with inefficient prM cleavage "breathe" differently than their more mature counterparts, resulting in distinct patterns of neutralization sensitivity. Additionally, the maturation state was found to impact virus stability in solution. Our findings provide insight into the complex flavivirus structures that contribute to infection with the potential to impact antibody recognition.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Dengue/química , Vírus da Dengue/imunologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/imunologia , Relação Dose-Resposta Imunológica , Células HEK293 , Humanos , Testes de Neutralização
9.
J Virol ; 88(6): 3379-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390334

RESUMO

UNLABELLED: Flavivirus replication is mediated by a complex machinery that consists of viral enzymes, nonenzymatic viral proteins, and host factors. Many of the nonenzymatic viral proteins, such as NS4B, are associated with the endoplasmic reticulum membrane. How these membrane proteins function in viral replication is poorly understood. Here we report a robust method to express and purify dengue virus (DENV) and West Nile virus NS4B proteins. The NS4B proteins were expressed in Escherichia coli, reconstituted in dodecyl maltoside (DDM) detergent micelles, and purified to >95% homogeneity. The recombinant NS4B proteins dimerized in vitro, as evidenced by gel filtration, chemical cross-linking, and multiangle light scattering experiments. The dimeric form of NS4B was also detected when the protein was expressed alone in cells as well as in cells infected with DENV type 2 (DENV-2). Mutagenesis analysis showed that the cytosolic loop (amino acids 129 to 165) and the C-terminal region (amino acids 166 to 248) are responsible for NS4B dimerization. trans-Complementation experiments showed that (i) two genome-length RNAs containing distinct NS4B lethal mutations could not trans-complement each other, (ii) the replication defect of NS4B mutant RNA could be restored in cells containing DENV-2 replicons, and (iii) expression of wild-type NS4B protein alone was not sufficient to restore the replication of the NS4B mutant RNA. Collectively, the results indicate that trans-complementation of a lethal NS4B mutant RNA requires wild-type NS4B presented from a replication complex. IMPORTANCE: The reported expression and purification system has made it possible to study the biochemistry and structure of flavivirus NS4B proteins. The finding of flavivirus NS4B dimerization and the mapping of regions important for NS4B dimerization provide the possibility to inhibit viral replication through blocking NS4B dimerization. The requirement of NS4B in the context of the replication complex for successful trans-complementation enhances our understanding of NS4B in flavivirus replication.


Assuntos
Vírus da Dengue/metabolismo , Dengue/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/metabolismo , Motivos de Aminoácidos , Vírus da Dengue/química , Vírus da Dengue/genética , Dimerização , Humanos , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
10.
J Virol ; 87(23): 13063-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049184

RESUMO

Flavivirus genomes with deletions in the capsid (C) gene are attractive vaccine candidates, as they secrete highly immunogenic subviral particles (SVPs) without generating infectious virus. Here, we report that cytomegalovirus promoter-driven cDNA of West Nile virus Kunjin (KUNV) containing a glycosylation motif in the envelope (E) gene and a combined deletion of alpha helices 1, 2, and 4 in C produces significantly more SVPs than KUNV cDNAs with nonglycosylated E and various other deletions in C.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Vírus do Nilo Ocidental/fisiologia , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Genoma Viral , Glicosilação , Humanos , Estrutura Secundária de Proteína , Proteínas do Envelope Viral/genética , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
11.
J Virol ; 87(24): 13729-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24109224

RESUMO

Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection.


Assuntos
Anticorpos Antivirais/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos , Células HEK293 , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
12.
J Chem Inf Model ; 54(10): 2816-25, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25263519

RESUMO

We report the discovery of a novel small-molecule inhibitor of the dengue virus (DENV) protease (NS2B-NS3pro) using a newly constructed Web-based portal (DrugDiscovery@TACC) for structure-based virtual screening. Our drug discovery portal, an extension of virtual screening studies performed using IBM's World Community Grid, facilitated access to supercomputer resources managed by the Texas Advanced Computing Center (TACC) and enabled druglike commercially available small-molecule libraries to be rapidly screened against several high-resolution DENV NS2B-NS3pro crystallographic structures. Detailed analysis of virtual screening docking scores and hydrogen-bonding interactions between each docked ligand and the NS2B-NS3pro Ser135 side chain were used to select molecules for experimental validation. Compounds were ordered from established chemical companies, and compounds with established aqueous solubility were tested for their ability to inhibit DENV NS2B-NS3pro cleavage of a model substrate in kinetic studies. As a proof-of-concept, we validated a small-molecule dihydronaphthalenone hit as a single-digit-micromolar mixed noncompetitive inhibitor of the DENV protease. Since the dihydronaphthalenone was predicted to interact with NS2B-NS3pro residues that are largely conserved between DENV and the related West Nile virus (WNV), we tested this inhibitor against WNV NS2B-NS3pro and observed a similar mixed noncompetitive inhibition mechanism. However, the inhibition constants were ∼10-fold larger against the WNV protease relative to the DENV protease. This novel validated lead had no chemical features or pharmacophores associated with adverse toxicity, carcinogenicity, or mutagenicity risks and thus is attractive for additional characterization and optimization.


Assuntos
Antivirais/química , Vírus da Dengue/química , Inibidores Enzimáticos/química , Naftalenos/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Vírus da Dengue/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência do Ácido Nucleico , Serina Endopeptidases/genética , Especificidade da Espécie , Termodinâmica , Interface Usuário-Computador , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/enzimologia
13.
J Struct Biol ; 183(1): 86-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23602814

RESUMO

Coordinated interplay between membrane proteins and the lipid bilayer is required for such processes as transporter function and the entrance of enveloped viruses into host cells. In this study, three-dimensional cryo-electron microscopy density maps of mature and immature flaviviruses were analyzed to assess the curvature of the membrane leaflets and its relation to membrane-bound viral glycoproteins. The overall morphology of the viral membrane is determined by the icosahedral scaffold composed of envelope (E) and membrane (M) proteins through interaction of the proteins' stem-anchor regions with the membrane. In localized regions, small membrane areas exhibit convex, concave, flat or saddle-shaped surfaces that are constrained by the specific protein organization within each membrane leaflet. These results suggest that the organization of membrane proteins in small enveloped viruses mediate the formation of membrane curvature.


Assuntos
Bicamadas Lipídicas/química , Proteínas do Envelope Viral/química , Proteínas da Matriz Viral/química , Vírus do Nilo Ocidental/ultraestrutura , Microscopia Crioeletrônica , Vírus do Nilo Ocidental/química
14.
Proc Natl Acad Sci U S A ; 107(44): 18950-5, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956322

RESUMO

Many flaviviruses are significant human pathogens, with the humoral immune response playing an essential role in restricting infection and disease. CR4354, a human monoclonal antibody isolated from a patient, neutralizes West Nile virus (WNV) infection at a postattachment stage in the viral life-cycle. Here, we determined the structure of WNV complexed with Fab fragments of CR4354 using cryoelectron microscopy. The outer glycoprotein shell of a mature WNV particle is formed by 30 rafts of three homodimers of the viral surface protein E. CR4354 binds to a discontinuous epitope formed by protein segments from two neighboring E molecules, but does not cause any detectable structural disturbance on the viral surface. The epitope occurs at two independent positions within an icosahedral asymmetric unit, resulting in 120 binding sites on the viral surface. The cross-linking of the six E monomers within one raft by four CR4354 Fab fragments suggests that the antibody neutralizes WNV by blocking the pH-induced rearrangement of the E protein required for virus fusion with the endosomal membrane.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Fragmentos Fab das Imunoglobulinas/química , Proteínas Estruturais Virais/química , Vírus do Nilo Ocidental/química , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Sítios de Ligação , Endossomos/imunologia , Endossomos/virologia , Epitopos/química , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Dados de Sequência Molecular , Proteínas Estruturais Virais/imunologia , Internalização do Vírus/efeitos dos fármacos , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/ultraestrutura
15.
J Basic Microbiol ; 53(10): 800-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961336

RESUMO

The primary amino acid sequence of West Nile virus (WNV) polyprotein, GenBank accession number M12294, was analyzed by computional biology. WNV is a mosquito-borne neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. Using pentapeptides as scanning units and the perfect peptide match program from PIR International Protein Sequence Database, we compared the WNV polyprotein and the human proteome. WNV polyprotein showed significant sequence similarities to a number of human proteins. Several of these proteins are involved in embryogenesis, neurite outgrowth, cortical neuron branching, formation of mature synapses, semaphorin interactions, and voltage dependent L-type calcium channel subunits. The biocomputional study suggest that common amino acid segments might represent a potential platform for further studies on the neurological pathophysiology of WNV infections.


Assuntos
Oligopeptídeos/química , Proteoma/química , Proteínas Virais/química , Vírus do Nilo Ocidental/química , Sequência de Aminoácidos , Bases de Dados de Proteínas , Humanos , Análise de Sequência de Proteína , Vírus do Nilo Ocidental/fisiologia
16.
J Gen Virol ; 93(Pt 1): 39-49, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940408

RESUMO

Despite utilizing the same avian hosts and mosquito vectors, St Louis encephalitis virus (SLEV) and West Nile virus (WNV) display dissimilar vector-infectivity and vertebrate-pathogenic phenotypes. SLEV exhibits a low oral infection threshold for Culex mosquito vectors and is avirulent in avian hosts, producing low-magnitude viraemias. In contrast, WNV is less orally infective to mosquitoes and elicits high-magnitude viraemias in a wide range of avian species. In order to identify the genetic determinants of these different phenotypes and to assess the utility of mosquito and vertebrate cell lines for recapitulating in vivo differences observed between these viruses, reciprocal WNV and SLEV pre-membrane and envelope protein (prME) chimeric viruses were generated and growth of these mutant viruses was characterized in mammalian (Vero), avian (duck) and mosquito [Aedes (C6/36) and Culex (CT)] cells. In both vertebrate lines, WNV grew to 100-fold higher titres than SLEV, and growth and cytopathogenicity phenotypes, determined by chimeric phenotypes, were modulated by genetic elements outside the prME gene region. Both chimeras exhibited distinctive growth patterns from those of SLEV in C6/36 cells, indicating the role of both structural and non-structural gene regions for growth in this cell line. In contrast, growth of chimeric viruses was indistinguishable from that of virus containing homologous prME genes in CT cells, indicating that structural genetic elements could specifically dictate growth differences of these viruses in relevant vectors. These data provide genetic insight into divergent enzootic maintenance strategies that could also be useful for the assessment of emergence mechanisms of closely related flaviviruses.


Assuntos
Quimera/crescimento & desenvolvimento , Vírus da Encefalite de St. Louis/crescimento & desenvolvimento , Encefalite de St. Louis/virologia , Proteínas do Envelope Viral/metabolismo , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/crescimento & desenvolvimento , Aedes , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimera/genética , Quimera/fisiologia , Culicidae , Efeito Citopatogênico Viral , Patos , Vírus da Encefalite de St. Louis/química , Vírus da Encefalite de St. Louis/genética , Vírus da Encefalite de St. Louis/fisiologia , Evolução Molecular , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia
17.
J Gen Virol ; 93(Pt 1): 50-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940411

RESUMO

West Nile virus (WNV) non-structural protein 1 (NS1) elicits protective immune responses during infection of animals. WNV NS1-specific antibody responses can provide the basis for serological diagnostic reagents, so the antigenic sites in NS1 that are targeted by host immune responses need to be identified and the conservation of these sites among the Japanese encephalitis virus (JEV) serocomplex members also needs to be defined. The present study describes the mapping of linear B-cell epitopes in WNV NS1. We screened eight NS1-specific mAbs and antisera (polyclonal antibodies; pAbs) from mice immunized with recombinant NS1 for reactivity against 35 partially overlapping peptides covering the entire WNV NS1. The screen using mAbs identified four WNV-specific (including Kunjin virus) epitopes, located at aa 21-36, 101-116, 191-206 and 261-276 in WNV NS1. However, using pAbs, only three WNV-specific epitopes were identified, located at positions 101-116, 191-206 and 231-246. Two of these epitopes (aa 21-36 and 261-276) had different reactivity with mAbs and pAbs. The knowledge and reagents generated in this study have potential applications in differential diagnostics and epitope-based marker vaccine development for WNV and viruses of the JEV serocomplex.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/virologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Proteínas não Estruturais Virais/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
18.
J Gen Virol ; 93(Pt 9): 1965-1975, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22764317

RESUMO

The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.


Assuntos
Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Liberação de Vírus , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/patogenicidade , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Feminino , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Proteínas do Envelope Viral/genética , Virulência , Replicação Viral , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
19.
J Virol ; 84(1): 426-36, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19846531

RESUMO

West Nile virus capsid protein (WNVCp) displays pathogenic toxicity via the apoptotic pathway. However, a cellular mechanism protective against this toxic effect has not been observed so far. Here, we identified Makorin ring finger protein 1 (MKRN1) as a novel E3 ubiquitin ligase for WNVCp. The cytotoxic effects of WNVCp as well as its expression levels were inhibited in U2OS cells that stably expressed MKRN1. Immunoprecipitation analyses revealed an interaction between MKRN1 and WNVCp. Domain analysis indicated that the C terminus of MKRN1 and the N terminus of WNVCp were required for the interaction. MKRN1 could induce WNVCp ubiquitination and degradation in a proteasome-dependent manner. Interestingly, the WNVCp mutant with amino acids 1 to 105 deleted WNVCp was degraded by MKRN1, whereas the mutant with amino acids 1 to 90 deleted was not. When three lysine sites at positions 101, 103, and 104 of WNVCp were replaced with alanine, MKRN1-mediated ubiquitination and degradation of the mutant were significantly inhibited, suggesting that these sites are required for the ubiquitination. Finally, U2OS cell lines stably expressing MKRN1 were resistant to cytotoxic effects of WNV. In contrast, cells depleted of MKRN1 were more susceptible to WNVCp cytotoxicity. Confirming this, overexpression of MKRN1 significantly reduced, but depletion of MKRN1 increased, WNV proliferation in 293T cells. Taken together, our results suggest that MKRN1 can protect cells from WNV by inducing WNVCp degradation.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vírus do Nilo Ocidental/patogenicidade , Substituição de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/fisiologia , Linhagem Celular Tumoral , Humanos , Lisina , Proteínas do Tecido Nervoso/genética , Complexo de Endopeptidases do Proteassoma , Ribonucleoproteínas/genética , Ubiquitinação , Vírus do Nilo Ocidental/química
20.
Virol J ; 8: 100, 2011 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-21375771

RESUMO

BACKGROUND: The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported. RESULTS: In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae. CONCLUSION: The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex.


Assuntos
Anticorpos Monoclonais/análise , Proteínas do Capsídeo/química , Sequência Conservada , Vírus da Encefalite Japonesa (Espécie)/química , Epitopos de Linfócito B/química , Biblioteca de Peptídeos , Vírus do Nilo Ocidental/química , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa