Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38472892

RESUMO

The objective in this work was the evaluation of the stability and content of bioactive compounds (total phenols and total flavonoids) and antioxidant activity of emulsions of ethanolic extracts of propolis obtained by ultrasound, during simulated in vitro digestion. The emulsions prepared with propolis extracts were evaluated on certain properties: their emulsion efficiency, stability (zeta potential, particle size, electrical conductivity), content of bioactive compound (total phenolics and total flavonoids), antioxidant activity and their behavior during simulated in vitro digestion. Based on the total phenol content, an emulsification efficiency of 87.8 ± 1.9% to 97.8 ± 3.8% was obtained. The particle size of the emulsions was 322.5 ± 15.33 nm to 463.9 ± 33.65 nm, with a zeta potential of -31.5 ± 0.66 mV to -28.2 ± 1.0 mV and electrical conductivity of 22.7 ± 1.96 µS/cm to 30.6 ± 0.91 µS/cm. These results indicate good emulsion stability. During simulated in vitro digestion, the content of bioactive compounds (total phenolics, total flavonoids) and antioxidant activity were affected during 77 days of storage at 4 °C. It was concluded that the emulsion process fulfills the function of protecting the bioactive compounds and therefore their biological activity.

2.
Foods ; 12(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37107379

RESUMO

Waste generated from the agro-food industry represents a concerning environmental, social and economic issue. The Food and Agriculture Organization of the United Nations defines food waste as all food that decreases in quantity or quality to the extent that it is thrown out by food service providers and consumers. The FAO reports that 17% of worldwide food production may be wasted. Food waste may include fresh products, food close to the expiration date discarded by retailers and food products from household kitchens and eating establishments. However, food waste offers different possibilities to extract functional ingredients from different sources, such as dairy, cereals, fruits, vegetables, fibers, oils, dye and bioactive compounds. The optimization of agro-food waste as an ingredient will help in the development and innovation of food products to generate functional food and beverages to prevent and treat several diseases in consumers.

3.
Polymers (Basel) ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080528

RESUMO

Silver nanoparticles were successfully synthesized using Thuja orientalis aqueous extract and AgNO3 as a precursor. UV-Vis showed a distinct absorption peak at 424 nm attributed to silver nanoparticles due to their surface plasmon resonance. Atomic absorption analysis reflected an increase in the concentration of nanoparticles in relation to the progress of the synthesis, obtaining a peak concentration value of 15.7 mg/L at 50 min. The FTIR spectra revealed the characteristic functional groups of phytomolecules involved in the silver-ion binding process, such as R-O-H (3335 cm-1) O=C-OH (2314 cm-1) and C-C=C (1450 cm-1). At 50 min, zeta potential showed the stability of the nanoparticles with the value of -21.73 mV. TEM micrographs revealed the formation of spherical nanoparticles with an average size of about 85.77 nm. Furthermore, films incorporated with nanoparticles exhibited a Tg from 66.42 °C to 73.71 °C and Tm at 103.31 °C. Films from the G22 formulation presented excellent antibacterial properties inhibiting the growth of Staphylococcus aureus. Thuja orientalis aqueous extract could be a low-cost, eco-friendly, and efficient reducing and capping agent for the synthesis of nanometric-sized Ag particles. Gelatin films with nanoparticles are expected to have high potential as an active food packaging system.

4.
Antioxidants (Basel) ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883895

RESUMO

The extraction of lycopene was carried out with three types of vegetable oils (grape, extra virgin olive, and peanut) by means of two methods: agitation and high-intensity ultrasound with a frequency of 20 kHz at an amplitude of 80% with periods of 40 s of sonication for 20 min at a temperature of 40 °C. The antioxidant determination by inhibition of ABTS and DPPH radicals showed no significant differences (p > 0.05) for inhibition of the ABTS radical in native oils and oils with lycopene. However, the radical DPPH showed that the native oils presented significant differences (p ≤ 0.05) compared to the samples with lycopene. FTIR spectra revealed the characteristic functional groups of lycopene exhibiting two characteristic peaks at 2923 cm−1 and 2957 cm−1. The DSC thermograms showed that the higher the degree of oil unsaturation, the lower the melting temperatures. Olive oil was the least unsaturated with the highest amount of oleic fatty acid. Grapeseed oil reported the lowest melting temperature at around −24.64 °C. Extra virgin olive oil showed the lightest values (L* = 41.08 ± 0.45) of brightness, and the peanut oil with lycopene was the darkest (L* = 16.72 ± 0.05). The extraction of lycopene from organic wastes treated with agitation and ultrasound was satisfactory reducing the use of conventional solvents. However, extraction with olive oil under agitation showed the best results.

5.
Polymers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335587

RESUMO

There are two types of milk whey obtained from cheese manufacture: sweet and acid. It retains around 55% of the nutrients of the milk. Milk whey is considered as a waste, creating a critical pollution problem, because 9 L of whey are produced from every 10 L of milk. Some treatments such as hydrolysis by chemical, fermentation process, enzymatic action, and green technologies (ultrasound and thermal treatment) are successful in obtaining peptides from protein whey. Milk whey peptides possess excellent functional properties such as antihypertensive, antiviral, anticancer, immunity, and antioxidant, with benefits in the cardiovascular, digestive, endocrine, immune, and nervous system. This review presents an update of the applications of milk whey hydrolysates as a high value-added peptide based on their functional properties.

6.
Foods ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806694

RESUMO

In this study, the preparation of a milk whey-based beverage with the addition of different concentrations of hydrolyzed collagen (0.3%, 0.5%, 0.75%, and 1%) was carried out. The control was considered at a concentration of 0%. Physicochemical properties, viscosity, antioxidant activity, and microbiological parameters were evaluated. The 1% collagen treatment showed the highest protein content (9.75 ± 0.20 g/L), as well as radical inhibition for ATBS (48.30%) and DPPH (30.06%). There were no significant differences (p ≥ 0.05) in the fat and lactose parameters. However, the pH in the control treatment was lower compared to beverages treated with hydrolyzed collagen. Fourier transform-infrared spectroscopy showed spectra characteristic of lactose and collagen amides. The viscosity increased significantly as the concentration of hydrolyzed collagen increased. The addition of hydrolyzed collagen increased the bioavailability, nutritional value, and the antioxidant activity of the beverage. Hydrolyzed collagen acted as an antimicrobial agent, as there was no presence of microorganism pathogens observed in the treated beverages.

7.
Molecules ; 25(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751910

RESUMO

Over the past decade, consumers have demanded natural, completely biodegradable active packaging serving as food containers. Bioactive plant compounds can be added to biopolymer-based films to improve their functionality, as they not only act as barriers against oxidation, microbiological, and physical damage, they also offer functionality to the food they contain. A water-in-oil (W/O) nanoemulsion was produced by applying ultrasound to xoconostle extract and orange oil, and was incorporated into gelatine films in different proportions 1:0 (control), 1:0.10, 1:0.25, 1:0.50, 1:0.75, and 1:1 (gelatine:nanoemulsion). The nanoemulsions had an average size of 118.80 ± 5.50 nm with a Z-potential of -69.9 ± 9.93 mV. The presence of bioactive compounds such as phenols, flavonoids, and betalains in the films was evaluated. The 1:1 treatment showed the highest presence of bioactive compounds, 41.31 ± 3.71 mg of gallic acid equivalent per 100 g (GAE)/100g for phenols, 28.03 ± 3.25 mg of quercetin equivalent per 100 g (EQ)/100g flavonoids and 0.014 mg/g betalains. Radical inhibition reached 72.13% for 2,20-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and 82.23% for 1,1-diphenyl-2-picrylhydrazyl (DPPH). The color of the films was influenced by the incorporation of nanoemulsions, showing that it was significantly different (p < 0.05) to the control. Mechanical properties, such as tensile strength, Young's modulus, and percentage elongation, were affected by the incorporation of nanoemulsified bioactive compounds into gelatine films. The obtained films presented changes in strength and flexibility. These characteristics could be favorable as packaging material.


Assuntos
Plásticos Biodegradáveis/química , Embalagem de Alimentos , Gelatina/química , Nanoestruturas/química , Opuntia/química , Extratos Vegetais/química , Óleos de Plantas/química , Antioxidantes/análise , Antioxidantes/química , Betalaínas/análise , Betalaínas/química , Cor , Emulsões/síntese química , Emulsões/química , Flavonoides/análise , Flavonoides/química , Gelatina/síntese química , Fenóis/análise , Fenóis/química
8.
Antioxidants (Basel) ; 9(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098294

RESUMO

Antioxidants are molecules that delay or inhibit the oxidation of other molecules. Its use significantly increased in recent years in the diet of people. Natural antioxidants are replacing the use of synthetic antioxidant ingredients due to their safety, nutritional, and therapeutic values. Hydrolyzed collagen (HC) is a popular ingredient considered to be an antioxidant. This low molecular weight protein has been widely utilized due to its excellent biocompatibility, easy biodegradability, and weak antigenicity. It is a safe cosmetic biomaterial with good moisturizing properties on the skin. The antioxidant properties of HC are conditioned to the size of the molecule: the lower the molecular weight of peptides, the greater the ability to donate an electron or hydrogen to stabilize radicals. The antioxidant capacity of HC is mostly due to the presence of hydrophobic amino acids in the peptide. The exact mechanism of peptides acting as antioxidants is not clearly known but some aromatic amino acids and histidine are reported to play an important role in the antioxidant activity. Oral ingestion of HC increases the levels of collagen-derived peptides in the blood torrent and improves the skin properties such as elasticity, skin moisture, and transepidermal water loss. Additionally, daily intakes of HC protect the skin against UV melasma, enhances the fibroblast production and extracellular matrix of the skin. HC has been identified as a safe cosmetic ingredient for topical formulations with good moisturizing properties at the stratum corneum layer of the skin. It reduces the effects of skin aging (dryness, laxity, and wrinkles). The use of HC as a principal ingredient in safe formulations for skin protection was reviewed and compared when it is used by topical and/or oral administration.

9.
Molecules ; 24(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703345

RESUMO

Hydrolyzed collagen (HC) is a group of peptides with low molecular weight (3-6 KDa) that can be obtained by enzymatic action in acid or alkaline media at a specific incubation temperature. HC can be extracted from different sources such as bovine or porcine. These sources have presented health limitations in the last years. Recently research has shown good properties of the HC found in skin, scale, and bones from marine sources. Type and source of extraction are the main factors that affect HC properties, such as molecular weight of the peptide chain, solubility, and functional activity. HC is widely used in several industries including food, pharmaceutical, cosmetic, biomedical, and leather industries. The present review presents the different types of HC, sources of extraction, and their applications as a biomaterial.


Assuntos
Colágeno , Hidrolisados de Proteína , Animais , Colágeno/química , Colágeno/isolamento & purificação , Colágeno/uso terapêutico , Humanos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Hidrolisados de Proteína/uso terapêutico
10.
Int J Mol Sci ; 20(16)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412541

RESUMO

The extraction and enzymatic hydrolysis of collagen from sheepskins at different times of hydrolysis (0, 10, 15, 20, 30 min, 1, 2, 3 and 4 h) were investigated in terms of amino acid content (hydroxyproline), isoelectric point, molecular weight (Mw) by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) method, viscosity, Fourier-transform infrared (FTIR) spectroscopy, antioxidant capacity by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, thermal properties (Differential Scanning Calorimetry) and morphology by scanning electron microscopy (SEM) technique. The kinetics of hydrolysis showed an increase in the protein and hydroxyproline concentration as the hydrolysis time increased to 4 h. FTIR spectra allowed us to identify the functional groups of hydrolysed collagen (HC) in the amide I region for collagen. The isoelectric point shifted to lower values compared to the native collagen precursor. The change in molecular weight and viscosity from time 0 min to 4 h promoted important antioxidant activity in the resulting HC. The lower the Mw, the greater the ability to donate an electron or hydrogen to stabilize radicals. From the SEM images it was evident that HC after 2 h had a porous and spongy structure. These results suggest that HC could be a good alternative to replace HC from typical sources like pigs, cows and fish.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Colágeno/química , Peptídeos/química , Peptídeos/farmacologia , Aminoácidos/química , Animais , Hidrólise , Ponto Isoelétrico , Peso Molecular , Ovinos , Pele/química , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA