Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(16): 17989-18000, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680346

RESUMO

In this study, a single factor exploration method was adopted to optimize the cotton shell-based activated carbon adsorption reaction time, temperature, pH value, initial concentration of cadmium ion, and other conditions. The experimental results showed that under the conditions of Cd2+ solution pH = 8, initial concentration of 100 mg/L, adsorption reaction time of 180 min, adsorption temperature of 45 °C, cotton shell-based activated carbon dosage of about 0.1 g, the removal rate of Cd2+ was 94.03%, the adsorption capacity was 51.95 mg/g, and the error was only 0.05%. The adsorption kinetic analysis of this study conforms to the quasi-second-order kinetic model, the adsorption isotherm analysis conforms to the Langmuir adsorption isothermal model, and the Gibbs free energy of the adsorption process is negative; the above simulation analysis also proves the spontaneity and feasibility of the adsorption process.

2.
Small ; : e2311034, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415298

RESUMO

In the cathode of proton exchange membrane fuel cells (PEMFCs), Fe and N co-doped carbon (Fe-N-C) materials with atomically dispersed active sites are one of the satisfactory candidates to replace Pt-based catalysts. However, Fe-N-C catalysts are vulnerable to attack from reactive oxygen species, resulting in inferior durability, and current strategies failing to balance the activity and stability. Here, this study reports Fe and Ce single atoms coupled catalysts anchored on ZIF-8-derived nitrogen-doped carbon (Fe/Ce-N-C) as an efficient ORR electrocatalyst for PEMFCs. In PEMFC tests, the maximum power density of Fe/Ce-N-C catalyst reached up to 0.82 W cm-2 , which is 41% larger than that of Fe-N-C. More importantly, the activity of Fe/Ce-N-C catalyst only decreased by 21% after 30 000 cycles under H2 /air condition. Density functional theory reveals that the strong coupling between the Fe and Ce sites result in the redistribution of electrons in the active sites, which optimizes the adsorption of OH* intermediates on the catalyst and increases the intrinsic activity. Additionally, the admirable radical scavenging ability of the Ce sites ensured that the catalysts gained long-term stability. Therefore, the addition of Ce single atoms provides a new strategy for improving the activity and durability of oxygen reduction catalysts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38035388

RESUMO

Iron single-atom catalysts (Fe SACs) hold great promise for peroxymonosulfate (PMS) activation and degradation of organic pollutants in wastewater. However, insights into crucial catalytic sites and activation mechanisms of biochar-based Fe SACs for PMS remain a challenge. Herein, cotton stalk-derived biochar-based Fe SACs (Fe SACs-BC) with an asymmetric Fe-N/O-C configuration were prepared, and their PMS activation and acid orange 7 (AO7) degradation mechanisms were investigated. The results showed that the removal efficiency of the Fe SACs-BC catalyst with Fe-N3O-C configuration for AO7 and other five investigated organic dyes reached 95-99% within 15 min. The EPR spectrums, quenching experiments, electrochemical analysis, masking experiments, XPS, and theoretical calculations indicated that degradations of organic dyes were dominated by singlet oxygen, which was generated by direct PMS conversion at the electron-deficient carbon and iron sites in the Fe-N3O-C configuration. The Fe SACs-BC/PMS exhibited high removal efficiency and strong tolerance in different water matrices with a wide pH range, various coexisting anions and interfering substances, showing great potential and applicability for efficient treatment of actual textile wastewaters.

4.
Environ Sci Pollut Res Int ; 30(48): 106214-106226, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726629

RESUMO

Modifications of sludge biochar with metal-based materials can enhance its fertilizing efficiency and improve safety. To elucidate the effects of ferrous sulfate modification on the fate of phosphorus in sludge biochar and its effect on phosphorus fractionation in soil, we investigated the changes in fractionation and bioavailability of phosphorus in modified sludge biochar and studied the changes in soil characteristics, microbial diversity and response, bioavailability, plant uptake of phosphorus, and heavy metals in contaminated soils after treatment with ferrous sulfate modified sludge biochar. The results demonstrated that ferrous sulfate modifications were conducive to the formation of moderately labile phosphorus in sludge biochar, and the concentrations increased by a factor of 2.7 compared to control. The application of ferrous sulfate-modified sludge biochar to alkaline heavy metal-contaminated soils enhanced the bioavailable, labile, and moderately labile phosphorus contents by a factor of 2.9, 3.0, and 1.6, respectively, whereas it obviously reduced the leachability and bioavailability of heavy metals in soils, exhibited great potentials in the fertilization and remediation of actual heavy metal-contaminated soils in mining areas. The biochar-induced reduction in soil pH, enhancement of organic matter, surface oxygen-containing functional groups, the abundance of Gammaproteobacteria, and its phosphonate degradation activity were primarily responsible for the solubilization of phosphorus from modified biochar in heavy metal-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Esgotos/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Solo/química , Fósforo
5.
J Hazard Mater ; 437: 129405, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35753298

RESUMO

In contaminated soil, pristine biochar has poor applicability for immobilizing vanadium (V), which mainly exists as oxyanions in soil. To elucidate the immobilization potential and biotic/abiotic stabilizing mechanisms of a ferrous sulfate (FS)-modified sludge biochar in a V-contaminated soil from a mining area, we investigated the effects of biochar addition on the soil characteristics, growth of alfalfa, leachability, bioavailability, speciation, and fractionation of V, and changes in the microbial community structure and metabolic response. The results showed that the water extractable, acid-soluble (F1), and pentavalent fractions of V in soil decreased by up to 99 %, 95 %, and 55 %, respectively, whereas the reducible and (F2) oxidizable (F3) fractions increased by up to 45 % and 76 %, respectively. After the soil was treated with the FS-modified biochar for 90 d, the V concentration in the roots and shoots of alfalfa (Medicago sativa L.) decreased by up to 81.5 % and 96 %, respectively. The changes in the speciation, fractionation, and efficient immobilization of V in the studied soil were due to the combined effects of the biochar-induced decrease in soil pH, adsorption and precipitation by elevated iron concentrations, reduction and complexation due to an increase in the organic matter content, and microbial reduction by Proteobacteria.


Assuntos
Esgotos , Poluentes do Solo , Bioacumulação , Cádmio/análise , Carvão Vegetal/química , Compostos Ferrosos , Medicago sativa , Solo/química , Poluentes do Solo/análise , Vanádio
6.
Sci Total Environ ; 813: 152526, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34954168

RESUMO

The application of pyrolyzed sewage sludge for land remediation is increasingly being considered as a technical solution to reuse nutrients in the sludge and mitigate the burden of sludge treatment. In this study, the enhancement effect of Ca-based additives, via phosphorus pyrolysis transformation promotion, was systematically investigated for the growth of ryegrass and soil microbial diversity. In the pot experiment, pyrochar-modified methods mainly changed the content of available phosphorus and organic matter in the soil and then affected ryegrass growth. Soils treated with pyrochar prepared with CaO and Ca(OH)2 addition were dominated by phosphorus precipitation-capable Ramlibacter, while metal uptake-accelerating Massilia showed a high prevalence in the group treated with pristine sludge pyrochar. The results showed that the species composition of CaO and Ca(OH)2 treated groups were similar, while the groups treated with Ca3(PO4)2 and pristine sludge pyrochar exhibited similar compositional structures of microbial species. Furthermore, less than 3% of Pb accumulated in the shoots of the Ca-based additive-treated groups, but more than 35% of Pb was distributed in shoots treated with pristine sludge pyrochar. Therefore, the application of P-enhanced pyrochar adjusted by Ca-based additives to soil was beneficial to the growth of ryegrass and preventing metal transfer from soil to ryegrass. Based on both macroscopic and microscopic information, we summarized the promotion effect of P-enhanced pyrochar on ryegrass growth and soil physicochemical properties with the aim of designing a smart pyrochar for waste-to-resource applications.


Assuntos
Lolium , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Esgotos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
7.
Environ Pollut ; 265(Pt B): 114916, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32563117

RESUMO

Liquid digestate containing high levels of nutrients and humic and fatty acids can affect vanadium species and their plant uptake. To elucidate the effects of liquid digestate on the valence state of vanadium in soil and plant tissue, as well as its effects on the microbial community and soil properties, we grew green bristlegrass (Setaria viridis), a native plant capable of growing in vanadium mining areas, in vanadium-contaminated soils sampled from a mining area and treated it with 5% and 10% liquid digestate for 90 d, respectively. Changes in the concentrations of pentavalent (V[V]) and tetravalent (V[IV]) vanadium in the soils and the shoots and roots of bristlegrass and the soil microbial abundance were measured. The results showed that vanadium existed mainly in the form of V(IV) in the soil but accumulated mainly in the form of V(V) in the bristlegrass. Liquid digestate markedly reduced V(V) concentrations in the soils (by up to 45%) and in the shoots and roots of green bristlegrass (by up to 98%). Liquid digestate enhanced the abundance of Bacteroidetes, which can reduce V(V) to lower valence state. Microbial reduction and phosphorus immobilization were responsible for downregulating V(V) concentrations in the plant and soil. The liquid digestate can be used to enhance in situ bioremediation of vanadium-contaminated soil in mining area.


Assuntos
Microbiota , Poluentes do Solo/análise , Biodegradação Ambiental , Solo , Vanádio/análise
8.
J Hazard Mater ; 388: 122026, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31958612

RESUMO

Biochar is a low-cost, porous, and carbon-rich material and it exhibits a great potential as an adsorbent and a supporting matrix due to its high surface activity, high specific surface area, and high ion exchange capacity. Metal nanomaterials are nanometer-sized solid particles which have high reactivity, high surface area, and high surface energy. Owing to their aggregation and passivation, metal nanomaterials will lose excellent physiochemical properties. Carbon-enriched biochar can be applied to overcome these drawbacks of metal nanomaterials. Combining the advantages of biochar and metal nanomaterials, supporting metal nanomaterials on porous and stable biochar creates a new biochar-supported metal nanoparticles (MNPs@BC). Therefore, MNPs@BC can be used to design the properties of metal nanoparticles, stabilize the anchored metal nanoparticles, and facilitate the catalytic/redox reactions at the biochar-metal interfaces, which maximizes the efficiency of biochar and metal nanoparticles in environmental application. This work detailedly reviews the synthesis methods of MNPs@BC and the effects of preparation conditions on the properties of MNPs@BC during the preparation processes. The characterization methods of MNPs@BC, the removal/remediation performance of MNPs@BC for organic contaminants, heavy metals and other inorganic contaminants in water and soil, and the effect of MNPs@BC properties on the remediation efficiency were discussed. In addition, this paper summarizes the effect of various parameters on the removal of contaminants from water, the effect of MNPs@BC remediation on soil properties, and the removal/remediation mechanisms of the contaminants by MNPs@BC in water and soil. Moreover, the potential directions for future research and development of MNPs@BC have also been discussed.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas Metálicas/química
9.
Ultrason Sonochem ; 60: 104765, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539728

RESUMO

Burning of coal accounts for an enormous proportion of the current energy supply, especially in developing countries. Burning of coal produces large amounts of coal fly ash, which causes serious environmental problems unless it is managed properly. Using chemical analysis, we found that coal fly ash could be a promising source of Si, Al, Ca and some rare earth elements, especially with the assistance of some measures such as ultrasound. In this study, we extracted silicon from coal fly ash using an alkaline dissolution strategy and investigated the effects of temperature and ultrasonic power on the efficiency of silicon extraction. During a 70 min reaction, the efficiency of silicon extraction increased markedly, from 9.41% to 34.96%, as the reaction temperature increased from 70 °C to 110 °C. With ultrasound assistance, ultrasonic waves enhanced the extraction of silicon at both 80 °C and 110 °C at 720 W ultrasound, increasing the efficiency of silicon extraction from 6.01% to 15.36% and from 34.96% to 54.42%, respectively. However, at 900 W ultrasonic power, extraction was slightly inhibited at both temperatures, causing a little decrease in efficiency.

10.
Sci Total Environ ; 712: 135637, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31810710

RESUMO

Vanadium is a multivalent redox-sensitive metal that is widely distributed in the environment. Low levels of vanadium elevate plant height, root length, and biomass production due to enhanced chlorophyll biosynthesis, seed germination, essential element uptake, and nitrogen assimilation and utilization. However, high vanadium concentrations disrupt energy metabolism and matter cycling; inhibit key enzymes mediating energy production, protein synthesis, ion transportation, and other important physiological processes; and lead to growth retardation, root and shoot abnormalities, and even death of plants. The threshold level of toxicity is highly plant species-specific, and in most cases, the half maximal effective concentration (EC50) of vanadium for plants grown under hydroponic conditions and in soil varies from 1 to 50 mg/L, and from 18 to 510 mg/kg, respectively. Plants such as Chinese green mustard, chickpea, and bunny cactus could accumulate high concentrations of vanadium in their tissues, and thus are suitable for decontaminating and reclaiming of vanadium-polluted soils on a large scale. Soil pH, organic matter, and the contents of iron and aluminum (hydr)oxides, phosphorus, calcium, and other coexisting elements affect the bioavailability, toxicity, and plant uptake of vanadium. Mediation of these conditions or properties in vanadium-contaminated soils could improve plant tolerance, accumulation, or exclusion, thereby enhancing phytoremediation efficiency. Phytoremediation with the assistance of soil amendments and microorganisms is a promising method for decontamination of vanadium polluted soils.


Assuntos
Vanádio/metabolismo , Bioacumulação , Biodegradação Ambiental , Solo , Poluentes do Solo
11.
J Environ Manage ; 250: 109438, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31479938

RESUMO

A novel MgO-modified magnetic biochar (MgO@MBC) was made by chemical co-precipitation of Mg2+/Fe3+ on anaerobic digestion residue (ADR) and subsequently pyrolyzing at different temperatures. MgO@MBC was used for phosphate recovery from aqueous solution. The physicochemical properties of MgO@MBC were comprehensively investigated using TEM-EDS, FT-IR, XRD, VSM, N2 adsorption-desorption and TGA. Results showed that MgO/γ-Fe2O3 nanoparticles were successfully deposited onto the surface of BC. The effects of reaction temperature, initial solution pH, MgO@MBC dosage, coexisting anions and phosphate concentration on the removal of phosphate by MgO@MBC were researched. Additionally, the adsorption process of phosphate onto MgO@MBC was well described by the pseudo second-order and pseudo first-order models, which indicated a chemisorption and physisorption process. Besides, the maximum adsorption capacity of MgO@MBC for phosphate by the Langmuir model were 149.25 mg/g at 25 °C. Moreover, the thermodynamic study suggested that the adsorption of phosphate onto MgO@MBC was a spontaneous and endothermic process. The adsorption mechanisms including physical absorption, surface electrostatic attraction, surface complexation and precipitation were revealed. It could be concluded that MgO@MBC exhibited high removal efficiency of phosphate and excellent magnetic property for the recovery. MgO@MBC could be utilized as a magnetically recoverable adsorbent to realize phosphate recovery and MgO@MBC after the adsorpion of phosphate could be applied in agricultural production as a fertilizer.


Assuntos
Fosfatos , Poluentes Químicos da Água , Adsorção , Anaerobiose , Carvão Vegetal , Cinética , Óxido de Magnésio , Espectroscopia de Infravermelho com Transformada de Fourier
12.
ACS Appl Mater Interfaces ; 11(37): 33781-33791, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31450885

RESUMO

Amine-functionalized sorbents are investigated widely for CO2 capture from flue gas, to mitigate the crisis of global CO2 emission, with the advantages of excellent adsorption and regeneration performance. However, the presence of O2 in flue gas (3-10%) would induce the degradation of the sorbents, and some previous works proposed the strategies at the sacrifice of partial CO2 adsorption capacity. Herein, we focused on the oxidation behavior of PEI-functionalized silica in the long-term operation and analyzed the degradation mechanism by characterizing the oxidized sorbents. The sorbent proved to be oxidative stable under a lower temperature of air exposure, but the oxidative degradation would indeed occur at more harsh temperatures (above 90 °C). This study demonstrated that CO2 capture from O2-containing flue gas was feasible by controlling the operating temperature (below 75 °C), and the effective capacity of above 135 mg/g could be maintained in the cyclic CO2 capture.

13.
Environ Sci Pollut Res Int ; 26(15): 15406-15413, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30941713

RESUMO

In soil, vanadium (V) contamination is commonly concomitant with chromium (Cr) contamination, which poses potential risks to humans, animals, and plants due to the transfer of toxic metals and the increase in their concentrations via the food chain or through direct exposure. This study applied a multi-step column leaching process using low-molecular-weight organic acids (LMWOAs) to treat V-contaminated soil from a smelter site that contains 2015.1 mg V kg-1 and 1060.3 mg Cr kg-1. After leaching three times with an equivalent solution/soil ratio of 0.3 mL/g using 1.0 M oxalic acid solution, the total removal rates reached 77.2% and 7.2% for V and Cr, respectively, while the removal rates of the extractable fractions reached 118.6% and 99.2% due to the reduction in residual fraction (F4) of toxic metals. Simultaneously, the distribution and redistribution of geochemical fractions of V and Cr were determined with a sequential extraction technique, and the greater proportion of potential mobile fractions of V (65.1%) may increase its leaching from soil relative to Cr (7.1%). In addition, a lower pH of the leaching agent increased the efficiency of the leaching process to an extent. Compared with batch extraction with a typical solution to soil ratio of 10 mL/g, multi-step column leaching used less agent and hence produced less wastewater. This strategy could reduce the mobilization and bioavailability of toxic metals, and potentially enhance in situ soil flushing for the remediation of V- and Cr- contaminated soil.


Assuntos
Cromo/isolamento & purificação , Recuperação e Remediação Ambiental/métodos , Ácido Oxálico/química , Poluentes do Solo/isolamento & purificação , Vanádio/isolamento & purificação , Disponibilidade Biológica , China , Cromo/análise , Cromo/farmacocinética , Recuperação e Remediação Ambiental/instrumentação , Concentração de Íons de Hidrogênio , Malatos/química , Metalurgia , Peso Molecular , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Tartaratos/química , Vanádio/análise , Vanádio/farmacocinética , Águas Residuárias
14.
Ecotoxicol Environ Saf ; 174: 498-505, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30856562

RESUMO

Vanadium (V)-contaminated soil poses health risks to plants, animals, and humans via both direct exposure and through the food chain. Stabilization treatment of metal-contaminated soil can chemically convert metal contaminants into less soluble, mobile, and toxic forms. However, the stabilization mechanisms of V-contaminated soil have not been thoroughly investigated. Therefore, we performed geochemical modeling of V-contaminated soil stabilized with the common binders calcium oxide (CaO) and ferrous sulfate (FeSO4), as well as their mixture, using Visual MINTEQ software. The results were validated and exhibited good agreement with experimental results. For CaO, the formation of Ca2V2O7(s) and Ca3(VO4)2·4H2O(s) under mild and strong alkaline conditions (pH = 8.0-11.5 and 11.5-12.5), respectively, were predicted as the main immobilization routes. For FeSO4, there appeared to be three reaction routes, corresponding to approaches A, B, and C, during the stabilization process. In the simulation, approach C (adsorption of V(V) onto ferrihydrite) was undervalued, whereas approaches A (formation of Fe(VO3)2(s)) and B (reduction of V(V) into V(IV) to form V2O4(s) or adsorb onto soil organic matter) were overvalued. Among the three approaches, approach C had a dominant role and exhibited good agreement with the experimental results. Additionally, soil pH and the saturation index of precipitation had major roles in the stabilization process. The optimal pH ranges for the stabilization of V-contaminated soil using CaO and FeSO4 were pH = 9.5-12.5 and pH = 4.0-5.0, respectively.


Assuntos
Compostos de Cálcio/química , Recuperação e Remediação Ambiental/métodos , Compostos Ferrosos/química , Modelos Teóricos , Óxidos/química , Poluentes do Solo/análise , Vanádio/análise , Adsorção , China , Simulação por Computador , Software , Solo/química
15.
J Environ Manage ; 237: 399-407, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818242

RESUMO

High concentrations of vanadium, a ubiquitous element in the environment, in growing media leads to deformation of root structure and leaf chlorosis and necrosis, consequently affecting the translocations of nutrients and essential elements. However, the effects of vanadium on essential element uptake, and the interactions of essential elements in the presence of vanadium, remain incompletely understood. To elucidate the effects of different concentrations of vanadium on major and trace essential elements and plant growth, a native plant species growing in a vanadium mining area, Setaria viridis (dog tail's grass), was incubated in solutions containing 0-55.8 mg/L vanadium. The shoot accumulation of four major essential elements and five trace essential elements was detected, and the root length and stem height were measured. The results showed that vanadium in soil solution enhanced the accumulation of all major essential elements in shoot. Vanadium concentrations lower than 47.4 mg/L showed an obvious positive (p < 0.05) effect on P accumulation and translocation. In the case of trace essential elements, there were threshold values for solution vanadium stimulation of element uptake. The threshold values for Cu and Zn, Fe, and Mo uptake were 4.3, 16.3, and 40.6 mg/L, respectively. When vanadium levels surpassed these values, accumulation was suppressed and the solution vanadium concentrations attenuated the solution-to-shoot translocation of most of the essential elements. Among the trace essential elements, translocation of Fe was obviously enhanced (p < 0.05) by vanadium. Solution vanadium also enhanced plant growth at lower concentrations and inhibited it at higher levels. The threshold values for stem height and root length were 36.8 and 16.3 mg/L, respectively. Concentrations of 40 and 55.8 mg/L vanadium in soil solution caused a 50% decrease in root length and stem height, respectively, showing that root length of Setaria viridis is more susceptible to vanadium toxicity than stem growth.


Assuntos
Poluentes do Solo , Oligoelementos , Biodegradação Ambiental , Poaceae , Plântula , Solo , Vanádio
16.
J Hazard Mater ; 369: 456-464, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784976

RESUMO

Dog's tail grass (Setaria viridis) presented strong tolerance and high accumulation of vanadium in field conditions. Liquid digestate containing high levels of nutrients could alleviate vanadium toxicity and accelerate the growth of dog's tail grass. To elucidate the detoxification potential and mechanism of liquid digestate, dog's tail grass was grown in soil solution containing 0.14-55.8 mg L-1 of vanadium. Parameters including germination index (GI), tolerance index (TI), seedlings' fresh weight, seedlings' vanadium accumulation, antioxidant enzymes activity, malonaldehyde (MDA) content, and V5+ species, were measured after addition of 1%, 5%, 10% and 15% liquid digestate. The results showed that a vanadium level of 10.9 mg L-1was a threshold value for toxicity; furthermore, the GI and TI decreased by 50% when vanadium content reached 36.8 mg L-1. The MDA content was reduced, and the other parameters were markedly enhanced, after addition of 5% and 10% liquid digestate with vanadium levels above 36.8 mg L-1. V5+ species was the dominant vanadium species in solution and the addition of liquid digestate reduced V5+ concentrations. The detoxification of vanadium by liquid digestate was a combined effect of direct reduction of V5+ species and plant nutrition.


Assuntos
Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental/métodos , Poaceae/crescimento & desenvolvimento , Compostos de Vanádio/metabolismo , Compostos de Vanádio/toxicidade , Antioxidantes/metabolismo , Germinação , Malondialdeído , Poaceae/metabolismo , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Poluentes do Solo
17.
J Environ Manage ; 232: 895-901, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530280

RESUMO

Food waste (FW) is environmentally unfriendly and decays easily under ambient conditions. Vanadium (V) and chromium (Cr) contamination in soils has become an increasing concern due to risks to human health and environmental conservation. Volatile fatty acids (VFAs) derived from FW was applied as soil washing agent to treat V and Cr-contaminated soil collected from a former V smelter site in this work. The Community Bureau of Reference (BCR) three-step sequential extraction procedure was used to identify geochemical fractions of V and Cr influencing their mobility and biological toxicity. Optimal parameters of a single washing procedure were determined to be a 4 h contact time, liquid-solid ratio of 10:1, VFAs concentration of 30 g/L, and reaction temperature of 25 °C, considering for typical soil remediation projects and complete anaerobic fermentation of FW. Under the optimal conditions, butyric acid fermentation VFAs attained removal rates of 57.09 and 23.55% for extractable fractions of V and Cr, respectively. Simultaneously, a multi-washing process under a constant liquid-solid ratio using fresh and recycled VFAs was conducted, which led to an improvement on the total removal efficiency of toxic metals. The washing procedure could reach the pollution thresholds for several plants, such as of S. viridis, K. scoparia, M. sativa, and E. indica. This strategy enhances the utilization of VFAs derived from food waste, has a positive effect on V and Cr-contaminated soil remediation, wastewater control of soil washing and FW disposal.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Cromo , Ácidos Graxos Voláteis , Humanos , Solo , Vanádio
18.
J Environ Manage ; 222: 216-226, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29857314

RESUMO

High demand of Vanadium (V) in high-strength steel and battery manufacturing industry led to extensive V mining activity in China, and caused multi-metal pollution of soil around V mining area. To understand the phytoremediation potentials of native plants grown in V mining area, and the effect of soil properties and soil metal concentrations on toxic metal accumulations of native plants. Setaria viridis, Kochia scoparia and Chenopodium album were sampled from different sites in V mining area, soil properties, soil metal concentrations and metal accumulation amount of investigated plants were measured, bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. Soil pH, cation exchange capacity (CEC) and available phosphorous (P) can significantly affect V and copper (Cu) uptake in the shoots of Setaria viridis while soil metal contents were lower than the permissible limits. Soil pH can significantly affect V accumulations in the roots and shoots of Kochia scoparia grown in slightly V polluted soils. Setaria viridis exhibited TF > 1 for moderately V and slightly chromium (Cr) polluted soils, and BAF>1 for slightly Cu contaminated soils respectively. Kochia scoparia and Chenopodium album showed TF > 1 and BAF>1 for slightly V polluted soils, respectively. Setaria viridis was practical for in situ phytoextractions of moderately V and slightly Cr polluted soils, and phytostabilization of slightly Cu contaminated soils. Kochia scoparia and Chenopodium album could be used as phytoextractor and phytostablizer in slightly V polluted soils in V mining area. Metal uptake of native plants grown in slightly multi-metal contaminated sites in V mining area can be manipulated by altering soil properties.


Assuntos
Poluentes do Solo/farmacocinética , Vanádio/farmacologia , Biodegradação Ambiental , China , Metais Pesados , Plantas , Solo
19.
J Environ Manage ; 217: 797-804, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660705

RESUMO

The positive effect of sonication on volatile fatty acid (VFA) and hydrogen production was investigated by batch experiments. Several sonication densities (2, 1.6, and 1.2 W/mL) and times (5, 10, and 15 min) were tested. The optimal sonication condition was ultrasonic density 2 W/mL and ultrasonic time 15 min (2-U15). The FW particle size larger than 50 µm (d > 50 µm) were more susceptible to the sonication treatment than the smaller particle size (d ≤ 50 µm). The SCOD increased and VS reduction accelerated under sonication treatment. The maximum VFA production and the highest proportion of hydrogen in the biogas increased 65.3% and 59.1%, respectively, under the optimal sonication conditions compared to the unsonicated batch. Moreover, a reduction of over 50% in the time required to reach its maximum production was also observed. Butyric acid fermentation type was obtained whether following sonication treatment or not. The composition of key microbial community differed under the various sonication conditions. The genera Clostridium and Parabacteroides are predominantly responsible for VFA generation and both were found to be abundant under the optimal condition.


Assuntos
Ácidos Graxos Voláteis , Anaerobiose , Biocombustíveis , Reatores Biológicos , Fermentação , Alimentos , Sonicação
20.
RSC Adv ; 8(19): 10457-10464, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35540465

RESUMO

Anaerobic digestion of food waste (FW) is commonly considered an effective and green technology to convert solid waste into valuable feedstock including volatile fatty acids (VFAs) and hydrogen. Response surface methodology (RSM) was selected to analyze the production of VFAs and hydrogen from food waste in a batch process. The effect of the three variables i.e. total solid content (TS), pH, and reaction time under each variable at three levels on VFAs and hydrogen production was assessed. The optimum conditions determined via RSM were pH = 7.0, TS = 100 g L-1, and reaction time = 3 d. The maximum VFA and hydrogen production was 26.17 g L-1 and 46.03 mL g-1 volatile solids added, respectively. The ratio of observed hydrogen (Ho) to predicted hydrogen (Hp) was x < 1.0 because of inhibition of hydrogen production by VFA accumulation. The subsequent microbial community analysis result was also consistent with the abovementioned results. The evolution of Bacteroidetes, which facilitate VFA production, has been enriched by about 16.1-times at pH 7.0 followed by 10.2-times at pH 6.0 as compared to that in the uncontrolled pH batch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA