Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadk1992, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457503

RESUMO

The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.


Assuntos
Luminescência , Plantas , Animais , Mamíferos
2.
Nat Methods ; 21(3): 406-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253843

RESUMO

The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.


Assuntos
Eucariotos , Luminescência , Animais , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA