Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Commun ; 14(1): 5065, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604803

RESUMO

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in many individuals possessing hybrid immunity, generated through a combination of vaccination and infection. Concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that prior SARS-CoV-2 infection is associated with immune dampening. Taking a broad and comprehensive approach, we characterize mucosal and blood immunity to spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without prior SARS-CoV-2 infection. We find that most individuals increase BA.1/BA.2/BA.5-specific neutralizing antibodies following infection, but confirm that the magnitude of increase and post-omicron titres are higher in the infection-naive. In contrast, significant increases in nasal responses, including neutralizing activity against BA.5 spike, are seen regardless of infection history. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are significantly higher in the previously-infected, who display a maximally induced response with a highly cytotoxic CD8+ phenotype following their 3rd mRNA vaccine dose. Responses to non-spike antigens increase significantly regardless of prior infection status. These findings suggest that hybrid immunity induced by omicron breakthrough infections is characterized by significant immune enhancement that can help protect against future omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/classificação , Vacinas contra COVID-19/administração & dosagem , Imunidade , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes , Imunoglobulina A , Linfócitos T/imunologia , Imunidade nas Mucosas , Masculino , Feminino , Adulto
2.
Med ; 4(3): 191-215.e9, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36863347

RESUMO

BACKGROUND: Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS: Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS: We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS: Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING: Department for Health and Social Care, Medical Research Council.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , Vacina BNT162 , ChAdOx1 nCoV-19 , Estudos Prospectivos , SARS-CoV-2 , Anticorpos Neutralizantes , Pessoal de Saúde , Imunidade Humoral
3.
Lancet Microbe ; 3(1): e21-e31, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34778853

RESUMO

BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer-BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3-4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232-285). At 28 days (IQR 27-33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150-461] vs 55 [IQR 24-132] spot-forming units [SFUs] per 106 PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119-275] vs 162 [104-258] SFUs/106 PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461-535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099-55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221-242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Leucócitos Mononucleares , Estudos Prospectivos , Linfócitos T , Reino Unido/epidemiologia , Vacinas Sintéticas , Vacinas de mRNA
4.
iScience ; 24(11): 103353, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34729465

RESUMO

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

5.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735795

RESUMO

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Apresentação Cruzada/imunologia , Relação Dose-Resposta Imunológica , Etnicidade , Feminino , Humanos , Imunidade , Imunoglobulina G/imunologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Padrões de Referência , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem , Vacinas de mRNA
6.
Front Immunol ; 12: 573266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046027

RESUMO

Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.


Assuntos
Proteínas de Bactérias/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Macrófagos/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas de Bactérias/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Metilação , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Proteômica/métodos , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiologia , Estreptolisinas/genética
7.
Nat Commun ; 12(1): 2055, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824342

RESUMO

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Assuntos
Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunoensaio/métodos , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Proliferação de Células , Citocinas/metabolismo , Células HEK293 , Pessoal de Saúde , Humanos , Imunoglobulina G/imunologia , Memória Imunológica , Interferon gama/metabolismo , Pandemias , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos
8.
Genome Res ; 31(4): 645-658, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33722935

RESUMO

We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.


Assuntos
Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Humanos , Limite de Detecção , Células Vero
9.
Biochem Biophys Res Commun ; 538: 104-107, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33199022

RESUMO

The development of the SARS-CoV-2 pandemic has prompted an extensive worldwide sequencing effort to characterise the geographical spread and molecular evolution of the virus. A point mutation in the spike protein, D614G, emerged as the virus spread from Asia into Europe and the USA, and has rapidly become the dominant form worldwide. Here we review how the D614G variant was identified and discuss recent evidence about the effect of the mutation on the characteristics of the virus, clinical outcome of infection and host immune response.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/virologia , Evolução Molecular , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Ácido Aspártico/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Glicina/genética , Humanos , Imunogenicidade da Vacina , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Sci Adv ; 5(10): eaax9183, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692955

RESUMO

Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Biológicos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Depuradores Classe E/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(33): 16479-16488, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346090

RESUMO

Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Transdução de Sinais , Sequência Conservada , Regulação para Baixo , Evolução Molecular , Células HeLa/metabolismo , Humanos , Inflamação/patologia , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Lisossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Molécula 1 de Interação Estromal/metabolismo
12.
Sci Rep ; 6: 32667, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27600771

RESUMO

Spatio-temporal regulation of intracellular signalling networks is key to normal cellular physiology; dysregulation of which leads to disease. The family of three mammalian tribbles proteins has emerged as an important controller of signalling via regulating the activity of mitogen activated protein kinases (MAPK), the PI3-kinase induced signalling network and E3 ubiquitin ligases. However, the importance of potential redundancy in the action of tribbles and how the differences in affinities for the various binding partners may influence signalling control is currently unclear. We report that tribbles proteins can bind to an overlapping set of MAPK-kinases (MAPKK) in live cells and dictate the localisation of the complexes. Binding studies in transfected cells reveal common regulatory mechanisms and suggest that tribbles and MAPKs may interact with MAPKKs in a competitive manner. Computational modelling of the impact of tribbles on MAPK activation suggests a high sensitivity of this system to changes in tribbles levels, highlighting that these proteins are ideally placed to control the dynamics and balance of activation of concurrent signalling pathways.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ligação Competitiva , Ativadores de Enzimas/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Transdução de Sinais , Frações Subcelulares/enzimologia
13.
Eur J Immunol ; 44(3): 887-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24249581

RESUMO

The importance of the BCR and TLR9 in autoimmunity and in the production of auto-antibodies is well established but the underlying molecular mechanism still needs to be determined. Here, we aim to characterize the BCR-TLR9 cross-talk by its effect on T-bet, as T-bet is activated and regulated by both receptors and has an important role in class-switching to pathological IgG2a in mice. Using primary mouse B cells, we demonstrate that T-bet expression is synergistically elevated by the cross-talk between the BCR and TLR9. To test the effect of this synergy on IgG2a-switching, the levels of switched B cells were checked by functional tests. We found that BCR costimulation had no additional effect on TLR9-induced IgG2a expression, however the expression of Rad51 was synergistically increased. To check the biological significance of the synergy, we compared T-bet expression in B cells from healthy and collagen-induced arthritis mice but no differences were found. Taken together, we demonstrate here that signaling cascades driven by the BCR and TLR9 have a newly identified meeting point at T-bet. The two cascades act synergistically on T-bet; however additional signals may be needed to induce prolonged functional responses such as class-switch recombination.


Assuntos
Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Linfócitos B/imunologia , Regulação da Expressão Gênica , Switching de Imunoglobulina , Imunoglobulina G/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica , Proteínas com Domínio T/genética
14.
Biologics ; 6: 101-15, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22532778

RESUMO

Antibodies specific for bovine type II collagen (CII) and Fcγ receptors play a major role in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA). Our aim was to clarify the mechanism of immune complex-mediated inflammation and modulation of the disease. CII pre-immunized DBA/1 mice were intravenously boosted with extravidin coupled biotinylated monomeric CII-peptide epitope (ARGLTGRPGDA) and its complexes with biotinylated FcγRII/III specific single chain Fv (scFv) fragment. Disease scores were monitored, antibody titers and cytokines were determined by ELISA, and binding of complexes was detected by flow cytometry and immune histochemistry. Cytokine and chemokine secretion was monitored by protein profiler microarray. When intravenously administered into collagen-primed DBA/1 mice, both CII-peptide and its complex with 2.4G2 scFv significantly accelerated CIA and increased the severity of the disease, whereas the monomeric peptide and monomeric 2.4G2 scFv had no effect. FcγRII/III targeted CII-peptide complexes bound to marginal zone macrophages and dendritic cells, and significantly elevated the synthesis of peptide-specific IgG2a. Furthermore, CII-peptide containing complexes augmented the in vivo secretion of cytokines, including IL-10, IL-12, IL-17, IL-23, and chemokines (CXCL13, MIP-1, MIP-2). These data indicate that complexes formed by the CII-peptide epitope aggravate CIA by inducing the secretion of chemokines and the IL-12/23 family of pro-inflammatory cytokines. Taken together, these results suggest that the in vivo emerging immune complexes formed with autoantigen(s) may trigger the IL-12/23 dependent pathways, escalating the inflammation in RA. Thus blockade of these cytokines may be beneficial to downregulate immune complex-induced inflammation in autoimmune arthritis.

15.
Curr Opin Lipidol ; 23(2): 122-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22274752

RESUMO

PURPOSE OF REVIEW: The success of high throughput sequencing programmes, including the Human Genome Project led to the 'identification' of a large number of novel genes of completely unknown function. Since then, many of these genes have been subject to functional studies focussed on uncovering their biological importance. Recent advances in genome-wide screening of DNA sequence variants as well as focussed genetic studies identified a number of candidate loci contributing to the development of complex diseases, including those affecting lipid homeostasis. An excellent example for the convergence of genetics and experimental biology is the tribbles gene family which was among those identified both in recent genetic studies and were implicated in dysregulation of lipid levels experimentally. Thus, there is a need now to take a step back and reconcile these findings accumulated over recent years. RECENT FINDINGS: Allelic variants of tribbles proteins have been associated with the control of fatty acid synthesis and insulin resistance as well as regulating plasma triglyceride and HDL cholesterol levels. Several mechanisms of molecular action have been proposed for the tribbles mediated control of these processes, including the regulation of signalling events, protein turnover and transcription, sometimes with conflicting evidence emerging. SUMMARY: This review attempts to synthesize knowledge obtained on the biology of the tribbles protein family in the context of lipid metabolism as well as discussing the recently emerging genetic evidence for the importance of these proteins in human disease.


Assuntos
Proteínas de Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Lipoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença/genética , Humanos , Resistência à Insulina/genética , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Serina-Treonina Quinases/genética , Triglicerídeos/metabolismo
16.
Biology (Basel) ; 1(1): 43-57, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24832046

RESUMO

Development of the atherosclerotic plaque involves a complex interplay between a number of cell types and an extensive inter-cellular communication via cell bound as well as soluble mediators. The family of tribbles proteins has recently been identified as novel controllers of pro-inflammatory signal transduction. The objective of this study was to address the expression pattern of all three tribbles proteins in atherosclerotic plaques from a mouse model of atherosclerosis. Each tribbles were expressed in vascular smooth muscle cells, endothelial cells as well as in resident macrophages of mouse atherosclerotic plaques. The role of IL-1 mediated inflammatory events in controlling tribbles expression was also addressed by inducing experimental atherosclerosis in ApoE-/-IL1R1-/- (double knockout) mice. Immunohistochemical analysis of these mice showed a selective decrease in the percentage of trb-1 expressing macrophages, compared to the ApoE-/- cohort (14.7% ± 1.55 vs. 26.3% ± 1.19). The biological significance of this finding was verified in vitro where overexpression of trb-1 in macrophages led to a significant attenuation (~70%) of IL-6 production as well as a suppressed IL-12 expression induced by a proinflammatory stimulus. In this in vitro setting, expression of truncated trb-1 mutants suggests that the kinase domain of this protein is sufficient to exert this inhibitory action.

17.
Arthritis Res Ther ; 12(2): R44, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20298547

RESUMO

INTRODUCTION: Inflammatory joint destruction in rheumatoid arthritis (RA) may be triggered by autoantibodies, the production of which is supported by autoreactive T cells. Studies on RA and animal models of the disease suggest that T cells recruited in the joints can locally initiate or propagate arthritis. Herein, we investigated the role of joint-homing versus lymphoid organ-homing T cells in the development of proteoglycan-induced arthritis (PGIA), an autoimmune model of RA. METHODS: To identify T cells migrating to the joints before and during development of autoimmune arthritis, we transferred fluorescence-labeled T cells, along with antigen-presenting cells, from BALB/c mice with PGIA to naïve syngeneic severe combined immunodeficient (SCID) mice. We then monitored the recruitment of donor T cells in the ankle joints and joint-draining lymph nodes of the recipients using in vivo two-photon microscopy and ex vivo detection methods. To limit T-cell access to the joints, we selectively depleted T cells in the blood circulation by treatment with FTY720, an inhibitor of lymphocyte egress from lymphoid organs. Reduction of T cell presence in both lymphoid organs and blood was achieved by injection of donor cells from which T cells were removed prior to transfer. T and B cells were quantitated by flow cytometry, and antigen (PG)-specific responses were assessed by cell proliferation and serum antibody assays. RESULTS: Despite development of adoptively transferred arthritis in the recipient SCID mice, we found very few donor T cells in their joints after cell transfer. Treatment of recipient mice with FTY720 left the T-cell pool in the lymphoid organs intact, but reduced T cells in both peripheral blood and joints. However, FTY720 treatment failed to inhibit PGIA development. In contrast, arthritis was not seen in recipient mice after transfer of T cell-depleted cells from arthritic donors, and serum autoantibodies to PG were not detected in this group of mice. CONCLUSIONS: Our results suggest that antigen-specific T cells, which home to lymphoid organs and provide help to B cells for systemic autoantibody production, play a greater role in the development and progression of autoimmune arthritis than the small population of T cells that migrate to the joints.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Articulações/imunologia , Proteoglicanas/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Movimento Celular , Feminino , Cloridrato de Fingolimode , Técnicas de Introdução de Genes , Humanos , Imunossupressores/farmacologia , Articulações/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Propilenoglicóis/farmacologia , Proteoglicanas/farmacologia , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
18.
Int Immunol ; 22(2): 71-80, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19951957

RESUMO

Fcgamma receptors (FcgammaRs) play an essential role in the regulation of immune response due to their ability to bind immune complexes. Activating FcgammaRs may facilitate antigen presentation and dendritic-cell maturation, while in the late phase of the immune response, the inhibitory FcgammaRIIb may down-regulate B-cell activation upon cross-linking with activating receptors. In this study, we investigated the in vivo role of FcgammaRs on the modulation of humoral immune response. In order to get well-defined immune complexes that can bind to both the activating and the inhibitory FcgammaRs, we designed a mono-biotinylated single-chain fragment variable construct from the rat anti-mouse CD16/32 clone 2.4G2, linked to avidin-FITC, and tested its effect on the FITC-hapten-specific T-independent type 2 (TI-2) and T-dependent (TD) immune response. When injected intravenously in mice, the complex bound to a small portion of B220+, CD11b(high) and CD11c(high) cells and was localized in the spleen on marginal zone macrophages 15 min after treatment. When applied as a booster following primary immunization with TI-2 (FITC-dextran) or TD (FITC-keyhole limpet haemocyanin) antigens, the complex elevated the number of hapten-specific IgM/IgG-producing B cells. This effect was diminished in CD16KO mice, suggesting that the activating-type FcgammaRIII might be a key mediator of this mechanism.


Assuntos
Células Produtoras de Anticorpos/imunologia , Avidina/imunologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Imunidade Humoral , Receptores de IgG/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Células Produtoras de Anticorpos/efeitos dos fármacos , Linfócitos B/imunologia , Biotinilação , Citocinas/metabolismo , Dextranos/administração & dosagem , Dextranos/imunologia , Fluoresceína-5-Isotiocianato/administração & dosagem , Hemocianinas/administração & dosagem , Hemocianinas/imunologia , Hibridomas , Imunidade Humoral/efeitos dos fármacos , Injeções Intravenosas , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Ratos , Receptores de IgG/deficiência , Receptores de IgG/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/genética , Baço/imunologia , Fatores de Tempo
19.
Immunol Lett ; 130(1-2): 66-73, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20005256

RESUMO

Immune complexes (ICs) induce effective pathogen-specific innate and humoral immune response via immunecomplex-binding receptors, such as murine complement receptor type 1 and 2 (mCR1/2) and murine low-affinity Fc receptors for IgG (mFcgammaRII and III). The exact function of mCR1/2 in cooperation with mFcgammaRII/III in modulation of humoral immunity has not yet been adequately clarified. The aim of this study was to target these receptors by specific single-chain fragments of antibody (scFv), either individually or in combination, thus modelling the action of IC. For targeting, we used scFv derived from the well-characterized 7g6 and 2.4g2 monoclonal antibodies recognizing mCR1/2 and mFcgammaRII/III, respectively. These scFvs were monobiotinylated and conjugated to streptavidin or streptavidin-coated microspheres. Such complexes were investigated with respect to target receptor recognition and in vivo localization. Antibody response against the constructs was measured by ELISA and ELISPOT. Results show that targeting streptavidin complexes to mFcgammaRII/III induces stronger IgG1 response than targeting to mCR1/2 yet both strategies enhance the antibody response compared to the control group immunized with non-targeted peptide-streptavidin complexes. Moreover, the immunogenicity of coupled antigens increased using microspheres as carrier, instead of using soluble streptavidin. In summery, our in vivo experiments reveal that mFcgammaRII/III is more potent a target than CR1/2 and show that combined targeting of CR1/2 and FcgammaRII/III receptors does not result in cumulative enhancement of the antigen specific immune response. In addition, microparticle-mediated enhancement of immunization can be further improved by FcgammaRII/III targeting.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Imunidade Humoral , Receptores de Complemento/imunologia , Receptores de IgG/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C
20.
Int Immunol ; 20(12): 1543-50, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18952906

RESUMO

Inflammatory activation of monocytes is an essential part of both innate immune responses and the pathogenesis of conditions such as atherosclerosis. However, the mechanisms which modulate the response of monocytes to inflammatory stimuli are still poorly understood. Here, we report that tribbles-2 (trb-2) is a novel regulator of inflammatory activation of monocytes. Down-regulation of trb-2 levels potentiates LPS-induced IL-8 production via enhanced activation of the extracellular signal-regulated kinase and jun kinase mitogen-activated protein kinase (MAPK) pathways. In keeping with this, the endogenous level of trb-2 expression in human primary monocytes is inversely correlated to the cell's ability to produce IL-8. We show that trb-2 is a binding partner and a negative regulator of selected MAPKs. The potential in vivo relevance of these findings is highlighted by the observation that modified low-density lipoprotein profoundly down-regulates trb-2 expression, which may, in turn, significantly contribute to the inflammatory processes in the development of vascular disease. Taken together, our results define trb-2 as a potent novel regulator of monocyte biology, controlling the activation of these cells.


Assuntos
Interleucina-8/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoproteínas LDL/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Aterosclerose/etiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Linhagem Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipoproteínas LDL/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Monócitos/citologia , Ligação Proteica , RNA Interferente Pequeno/genética , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA