Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMJ Open ; 13(4): e065613, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012016

RESUMO

INTRODUCTION: Sepsis, the leading cause of acute kidney injury (AKI), is associated with a high morbidity and mortality. Alkaline phosphatase (ALP) is an endogenous detoxifying enzyme. A recombinant human ALP compound, ilofotase alfa, showed no safety or tolerability concerns in a phase 2 trial. Renal function improvement over 28 days was significantly greater in the ilofotase alfa group. Moreover, a significant relative reduction in 28-day all-cause mortality of >40% was observed. A follow-up trial has been designed to confirm these findings. METHODS AND ANALYSIS: This is a phase 3, global, multi-centre, randomised, double-blind, placebo-controlled, sequential design trial in which patients are randomly assigned to either placebo or 1.6 mg/kg ilofotase alfa. Randomisation is stratified by baseline modified Sequential Organ Failure Assessment (mSOFA) score and trial site. The primary objective is to confirm the survival benefit with ilofotase alfa by demonstrating a reduction in 28-day all-cause mortality in patients with sepsis-associated AKI requiring vasopressors. A maximum of 1400 patients will be enrolled at ∼120 sites in Europe, North America, Japan, Australia and New Zealand. Up to four interim analyses will take place. Based on predefined decision rules, the trial may be stopped early for futility or for effectiveness. In addition, patients with COVID-19 disease and patients with 'moderate to severe' chronic kidney disease are analysed as 2 separate cohorts of 100 patients each. An independent Data Monitoring Committee evaluates safety data at prespecified intervals throughout the trial. ETHICS AND DISSEMINATION: The trial is approved by relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will determine the potential of ilofotase alfa to reduce mortality in critically ill patients with sepsis-associated AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: EudraCT CT Number 2019-0046265-24. US IND Number 117 605 Pre-results. CLINICALTRIALS: gov number: NCT04411472.


Assuntos
Injúria Renal Aguda , COVID-19 , Sepse , Humanos , SARS-CoV-2 , Fosfatase Alcalina/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Injúria Renal Aguda/etiologia , Resultado do Tratamento , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase III como Assunto
2.
JAMA ; 320(19): 1998-2009, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30357272

RESUMO

Importance: Sepsis-associated acute kidney injury (AKI) adversely affects long-term kidney outcomes and survival. Administration of the detoxifying enzyme alkaline phosphatase may improve kidney function and survival. Objective: To determine the optimal therapeutic dose, effect on kidney function, and adverse effects of a human recombinant alkaline phosphatase in patients who are critically ill with sepsis-associated AKI. Design, Setting, and Participants: The STOP-AKI trial was an international (53 recruiting sites), randomized, double-blind, placebo-controlled, dose-finding, adaptive phase 2a/2b study in 301 adult patients admitted to the intensive care unit with a diagnosis of sepsis and AKI. Patients were enrolled between December 2014 and May 2017, and follow-up was conducted for 90 days. The final date of follow-up was August 14, 2017. Interventions: In the intention-to-treat analysis, in part 1 of the trial, patients were randomized to receive recombinant alkaline phosphatase in a dosage of 0.4 mg/kg (n = 31), 0.8 mg/kg (n = 32), or 1.6 mg/kg (n = 29) or placebo (n = 30), once daily for 3 days, to establish the optimal dose. The optimal dose was identified as 1.6 mg/kg based on modeling approaches and adverse events. In part 2, 1.6 mg/kg (n = 82) was compared with placebo (n = 86). Main Outcomes and Measures: The primary end point was the time-corrected area under the curve of the endogenous creatinine clearance for days 1 through 7, divided by 7 to provide a mean daily creatinine clearance (AUC1-7 ECC). Incidence of fatal and nonfatal (serious) adverse events ([S]AEs) was also determined. Results: Overall, 301 patients were enrolled (men, 70.7%; median age, 67 years [interquartile range {IQR}, 59-73]). From day 1 to day 7, median ECC increased from 26.0 mL/min (IQR, 8.8 to 59.5) to 65.4 mL/min (IQR, 26.7 to 115.4) in the recombinant alkaline phosphatase 1.6-mg/kg group vs from 35.9 mL/min (IQR, 12.2 to 82.9) to 61.9 mL/min (IQR, 22.7 to 115.2) in the placebo group (absolute difference, 9.5 mL/min [95% CI, -23.9 to 25.5]; P = .47). Fatal adverse events occurred in 26.3% of patients in the 0.4-mg/kg recombinant alkaline phosphatase group; 17.1% in the 0.8-mg/kg group, 17.4% in the 1.6-mg/kg group, and 29.5% in the placebo group. Rates of nonfatal SAEs were 21.0% for the 0.4-mg/kg recombinant alkaline phosphatase group, 14.3% for the 0.8-mg/kg group, 25.7% for the 1.6-mg/kg group, and 20.5% for the placebo group. Conclusions and Relevance: Among patients who were critically ill with sepsis-associated acute kidney injury, human recombinant alkaline phosphatase compared with placebo did not significantly improve short-term kidney function. Further research is necessary to assess other clinical outcomes. Trial Registration: ClinicalTrials.gov Identifier: NCT02182440.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Fosfatase Alcalina/administração & dosagem , Creatinina/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Idoso , Fosfatase Alcalina/efeitos adversos , Fosfatase Alcalina/farmacologia , Área Sob a Curva , Estado Terminal , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Análise de Intenção de Tratamento , Masculino , Pessoa de Meia-Idade , Sepse/complicações
3.
BMJ Open ; 6(9): e012371, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27678541

RESUMO

INTRODUCTION: Acute kidney injury (AKI) occurs in 55-60% of critically ill patients, and sepsis is the most common underlying cause. No pharmacological treatment options are licensed to treat sepsis-associated AKI (SA-AKI); only supportive renal replacement therapy (RRT) is available. One of the limited number of candidate compounds in clinical development to treat SA-AKI is alkaline phosphatase (AP). The renal protective effect of purified bovine intestinal AP has been demonstrated in critically ill sepsis patients. To build on these observations, a human recombinant AP (recAP) was developed, of which safety and efficacy in patients with SA-AKI will be investigated in this trial. METHODS: This is a randomised, double-blind, placebo-controlled, 4-arm, proof-of-concept, dose-finding adaptive phase IIa/IIb study, conducted in critically ill patients with SA-AKI. A minimum of 290 patients will be enrolled at ∼50 sites in the European Union and North America. The study involves 2 parts. Patients enrolled during Part 1 will be randomly assigned to receive either placebo (n=30) or 1 of 3 different doses of recAP (n=30 per group) once daily for 3 days (0.4, 0.8 or 1.6 mg/kg). In Part 2, patients will be randomly assigned to receive the most efficacious dose of recAP (n=85), selected during an interim analysis, or placebo (n=85). Treatment must be administered within 24 hours after SA-AKI is first diagnosed and within 96 hours from first diagnosis of sepsis. The primary end point is the area under the time-corrected endogenous creatinine clearance curve from days 1 to 7. The key secondary end point is RRT incidence during days 1-28. ETHICS AND DISSEMINATION: This study is approved by the relevant institutional review boards/independent ethics committees and is conducted in accordance with the ethical principles of the Declaration of Helsinki, guidelines of Good Clinical Practice, Code of Federal Regulations and all other applicable regulations. Results of this study will reveal the efficacy of recAP for the improvement of renal function in critically ill patients with SA-AKI and will be published in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: NCT02182440; Pre-results.

4.
Clin Pharmacokinet ; 55(10): 1227-1237, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27147514

RESUMO

BACKGROUND AND OBJECTIVE: Previous clinical trials have suggested that bovine intestinal alkaline phosphatase has renal protective effects in patients with sepsis-associated acute kidney injury. We conducted a first-in-human study to investigate the pharmacokinetics, safety and tolerability of a novel human recombinant alkaline phosphatase (recAP), and we developed a population pharmacokinetic model to support dose selection for future patient studies. METHODS: In a randomized, double-blind, placebo-controlled, phase I trial, healthy volunteers received a single dose of recAP (200, 500, 1000 or 2000 U/kg; n = 33; 3:1 ratio) or multiple doses of recAP (500 or 1000 U/kg; n = 18; 2:1 ratio) via a 1-h intravenous infusion on three consecutive days. Serum recAP concentrations, alkaline phosphatase (AP) activity levels and anti-drug antibodies were measured, and safety parameters were monitored. A population pharmacokinetic model was developed, and simulations were performed to guide dose selection for a phase IIa/b trial. RESULTS: Peak concentrations of recAP and peak AP activity were reached at the end of the 1-h infusion and showed a rapid decline, with about 10 % of the maximum concentration remaining at 4 h and less than 5 % remaining 24 h post-start. RecAP treatment was generally well tolerated, and anti-drug antibodies could not be detected in the serum up to 2 weeks post-injection after a single dose, or up to 3 weeks post-injection after multiple doses. A four-compartment model best described the pharmacokinetics of recAP administration, with moderate inter-individual variability on the central volume of distribution and elimination rate constant. Simulations showed that 1-h intravenous infusions of 250, 500 and 1000 U/kg recAP once every 24 h for three consecutive days constituted the dosing regimen that best met the criteria for dose selection in patient studies. CONCLUSION: RecAP did not raise any safety concerns when administered to healthy volunteers. A population pharmacokinetic model was developed to support dose selection for patient studies. TRIAL REGISTRATION: 2013-002694-21 (EudraCT).


Assuntos
Fosfatase Alcalina/farmacocinética , Adolescente , Adulto , Índice de Massa Corporal , Simulação por Computador , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Grupos Raciais , Proteínas Recombinantes , Adulto Jovem
5.
Int J Pharm ; 495(1): 122-131, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26325308

RESUMO

Clinical trials showed renal protective effects of bovine intestinal alkaline phosphatase (AP) in patients with sepsis-associated acute kidney injury (AKI). Subsequently, a human recombinant chimeric AP (recAP) was developed as a pharmaceutically acceptable alternative. Here, we investigated the biodistribution and pharmacokinetics (PK) of recAP and developed a translational population PK model. Biodistribution was studied during LPS-induced AKI in rats. Iodine-125-labeled recAP was primarily taken up by liver, spleen, adrenals, heart, lungs and kidneys followed by the gastro-intestinal tract and thyroid. Tissue distribution was not critically affected by endotoxemia. PK parameters were determined in rats and minipigs during IV bolus injections of recAP, administered once, or once daily during seven consecutive days. Plasma concentrations of recAP increased with increasing dose and disappeared in a biphasic manner. Exposure to recAP, estimated by AUC and Cmax, was similar on days 1 and 7. Subsequently, population approach nonlinear mixed effects modeling was performed with recAP rat and minipig and biAP phase I PK data. Concentration versus time data was accurately described in all species by a two-compartmental model with allometric scaling based on body weight. This model provides a solid foundation for determining the optimal dose and duration of first-in-man recAP studies.


Assuntos
Fosfatase Alcalina/farmacocinética , Modelos Biológicos , Proteínas Recombinantes/farmacocinética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico por imagem , Fosfatase Alcalina/sangue , Animais , Relação Dose-Resposta a Droga , Humanos , Radioisótopos do Iodo/sangue , Radioisótopos do Iodo/farmacocinética , Lipopolissacarídeos , Cintilografia , Ratos , Proteínas Recombinantes/sangue , Suínos , Porco Miniatura , Distribuição Tecidual
6.
J Pharmacol Exp Ther ; 344(1): 2-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131595

RESUMO

Currently there are no pharmacological therapies licensed to treat sepsis-associated acute kidney injury (AKI). Considering the high incidence and mortality of sepsis-associated AKI, there is an urgent medical need to develop effective pharmacological interventions. Two phase II clinical trials recently demonstrated beneficial effects of the enzyme alkaline phosphatase (AP). In critically ill patients with sepsis-associated AKI, treatment with AP reduced the urinary excretion of tubular injury biomarkers and plasma markers of inflammation, which was associated with improvement of renal function. The dephosphorylating enzyme, AP, is endogenously present in the renal proximal tubule apical membrane but becomes depleted during ischemia-induced AKI, thereby possibly contributing to further renal damage. The exact mechanism of action of AP in AKI is unknown, but might be related to detoxification of circulating lipopolysaccharide and other proinflammatory mediators that lose their proinflammatory effects after dephosphorylation. Alternatively, tissue damage associated with systemic inflammation might be attenuated by an AP-mediated effect on adenosine metabolism. Adenosine is a signaling molecule that has been shown to protect the body from inflammation-induced tissue injury, which is derived through dephosphorylation of ATP. In this Perspectives article, we discuss the clinical activity of AP and its putative molecular modes of action, and we speculate on its use to treat and possibly prevent sepsis-associated AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Fosfatase Alcalina/uso terapêutico , Sepse/complicações , Trifosfato de Adenosina/metabolismo , Fosfatase Alcalina/farmacologia , Animais , Ensaios Clínicos como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Lipopolissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA