Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Nat Commun ; 15(1): 48, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167722

RESUMO

CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Vacinas , Masculino , Animais , Camundongos , Linfócitos T , Complexo CD3 , Neoplasias/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos de Neoplasias , Microambiente Tumoral
2.
J Immunother Cancer ; 11(11)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030302

RESUMO

BACKGROUND: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS: Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS: We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS: Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.


Assuntos
Vacinas Anticâncer , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Linfócitos T CD8-Positivos , Vacinas Anticâncer/uso terapêutico , Topotecan/farmacologia , Topotecan/uso terapêutico , DNA Topoisomerases Tipo I , Proteínas E7 de Papillomavirus , Vacinas de Subunidades Antigênicas , Neoplasias do Colo do Útero/tratamento farmacológico , Proliferação de Células , Microambiente Tumoral , Ligante CD27
3.
Cell Rep Methods ; 3(10): 100612, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37883923

RESUMO

Immunophenotyping is a powerful approach for deciphering responses of the immune system to drug screening and immunotherapy. In this issue of Cell Report Methods, Liechti et al. have advanced this approach by developing a pipeline, which allows high-throughput but still accurate single-cell immunophenotyping in time.


Assuntos
Sistema Imunitário , Imunoterapia , Imunofenotipagem
4.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37707962

RESUMO

SARS-CoV-2 is the third zoonotic coronavirus to cause a major outbreak in humans in recent years, and many more SARS-like coronaviruses with pandemic potential are circulating in several animal species. Vaccines inducing T cell immunity against broadly conserved viral antigens may protect against hospitalization and death caused by outbreaks of such viruses. We report the design and preclinical testing of 2 T cell-based pan-sarbecovirus vaccines, based on conserved regions within viral proteins of sarbecovirus isolates of human and other carrier animals, like bats and pangolins. One vaccine (CoVAX_ORF1ab) encoded antigens derived from nonstructural proteins, and the other (CoVAX_MNS) encoded antigens from structural proteins. Both multiantigen DNA vaccines contained a large set of antigens shared across sarbecoviruses and were rich in predicted and experimentally validated human T cell epitopes. In mice, the multiantigen vaccines generated both CD8+ and CD4+ T cell responses to shared epitopes. Upon encounter of full-length spike antigen, CoVAX_MNS-induced CD4+ T cells were responsible for accelerated CD8+ T cell and IgG Ab responses specific to the incoming spike, irrespective of its sarbecovirus origin. Finally, both vaccines elicited partial protection against a lethal SARS-CoV-2 challenge in human angiotensin-converting enzyme 2-transgenic mice. These results support clinical testing of these universal sarbecovirus vaccines for pandemic preparedness.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Vacinas de DNA , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Imunidade Celular , SARS-CoV-2/genética , Epitopos de Linfócito T/genética
5.
Cancer Immunol Immunother ; 72(8): 2851-2864, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222770

RESUMO

Therapeutic cancer vaccines trigger CD4 + and CD8 + T cell responses capable of established tumor eradication. Current platforms include DNA, mRNA and synthetic long peptide (SLP) vaccines, all aiming at robust T cell responses. SLPs linked to the Amplivant® adjuvant (Amplivant-SLP) have shown effective delivery to dendritic cells, resulting in improved immunogenicity in mice. We have now tested virosomes as a delivery vehicle for SLPs. Virosomes are nanoparticles made from influenza virus membranes and have been used as vaccines for a variety of antigens. Amplivant-SLP virosomes induced the expansion of more antigen-specific CD8 + T memory cells in ex vivo experiments with human PBMCs than Amplivant-SLP conjugates alone. The immune response could be further improved by including the adjuvants QS-21 and 3D-PHAD in the virosomal membrane. In these experiments, the SLPs were anchored in the membrane through the hydrophobic Amplivant adjuvant. In a therapeutic mouse model of HPV16 E6/E7+ cancer, mice were vaccinated with virosomes loaded with either Amplivant-conjugated SLPs or lipid-coupled SLPs. Vaccination with both types of virosomes significantly improved the control of tumor outgrowth, leading to elimination of the tumors in about half the animals for the best combinations of adjuvants and to their survival beyond 100 days.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Animais , Camundongos , Virossomos , Papillomavirus Humano 16 , Proteínas E7 de Papillomavirus , Neoplasias/tratamento farmacológico , Vacinação , Adjuvantes Imunológicos , Linfócitos T CD8-Positivos , Peptídeos , Vacinas Sintéticas , Camundongos Endogâmicos C57BL
6.
Cell Rep Med ; 4(3): 100939, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36796366

RESUMO

Immune checkpoint therapy (ICT) has the power to eradicate cancer, but the mechanisms that determine effective therapy-induced immune responses are not fully understood. Here, using high-dimensional single-cell profiling, we interrogate whether the landscape of T cell states in the peripheral blood predict responses to combinatorial targeting of the OX40 costimulatory and PD-1 inhibitory pathways. Single-cell RNA sequencing and mass cytometry expose systemic and dynamic activation states of therapy-responsive CD4+ and CD8+ T cells in tumor-bearing mice with expression of distinct natural killer (NK) cell receptors, granzymes, and chemokines/chemokine receptors. Moreover, similar NK cell receptor-expressing CD8+ T cells are also detected in the blood of immunotherapy-responsive cancer patients. Targeting the NK cell and chemokine receptors in tumor-bearing mice shows the functional importance of these receptors for therapy-induced anti-tumor immunity. These findings provide a better understanding of ICT and highlight the use and targeting of dynamic biomarkers on T cells to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Diferenciação Celular , Neoplasias/patologia , Receptores de Quimiocinas
7.
Leukemia ; 37(3): 606-616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658390

RESUMO

T-cell dysregulation in chronic lymphocytic leukemia (CLL) associates with low response rates to autologous T cell-based therapies. How CLL affects antigen-specific T-cell responses remains largely unknown. We investigated (epi)genetic and functional consequences of antigen-specific T-cell responses in presence of CLL in vitro and in an adoptive-transfer murine model. Already at steady-state, antigen-experienced patient-derived T cells were skewed towards short-lived effector cells (SLEC) at the expense of memory-precursor effector cells (MPEC). Stimulation of these T cells in vitro showed rapid induction of effector genes and suppression of key memory transcription factors only in presence of CLL cells, indicating epigenetic regulation. This was investigated in vivo by following antigen-specific responses of naïve OT-I CD8+ cells to mCMV-OVA in presence/absence of TCL1 B-cell leukemia. Presence of leukemia resulted in increased SLEC formation, with disturbed inflammatory cytokine production. Chromatin and transcriptome profiling revealed strong epigenetic modifications, leading to activation of an effector and silencing of a memory profile through presence of CLL cells. Secondary challenge in vivo confirmed dysfunctional memory responses by antigen-experienced OT-I cells generated in presence of CLL. Altogether, we show that presence of CLL induces a short-lived effector phenotype and impaired memory responses by epigenetic reprogramming during primary responses.


Assuntos
Leucemia Linfocítica Crônica de Células B , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Epigênese Genética , Linfócitos T CD8-Positivos , Antígenos , Fatores de Transcrição/genética
8.
J Immunol ; 209(5): 907-915, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922063

RESUMO

The PD-L1/2-PD-1 immune checkpoint is essential for the proper induction of peripheral tolerance and limits autoimmunity, whereas tumor cells exploit their expression to promote immune evasion. Many different cell types express PD-L1/2, either constitutively or upon stimulation, but the factors driving this expression are often poorly defined. In this study, using genome-wide CRISPR activation screening, we identified three factors that upregulate PD-L1 expression: GATA2, MBD6, and transcription cofactor vestigial-like protein 3 (VGLL3). VGLL3 acts as a transcriptional regulator, and its expression induced PD-L1 in many different cell types. Conversely, loss of VGLL3 impaired IFN-γ-induced PD-L1/2 expression in human keratinocytes. Mechanistically, by performing a second screen to identify proteins acting in concert with VGLL3, we found that VGLL3 forms a complex with TEAD1 and RUNX1/3 to drive expression of PD-L1/2. Collectively, our work identified a new transcriptional complex controlling PD-L1/2 expression and suggests that VGLL3, in addition to its known role in the expression of proinflammatory genes, can balance inflammation by upregulating the anti-inflammatory factors PD-L1 and PD-L2.


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Evasão da Resposta Imune , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
9.
Nat Commun ; 13(1): 3966, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803932

RESUMO

Understanding the mechanisms and impact of booster vaccinations are essential in the design and delivery of vaccination programs. Here we show that a three dose regimen of a synthetic peptide vaccine elicits an accruing CD8+ T cell response against one SARS-CoV-2 Spike epitope. We see protection against lethal SARS-CoV-2 infection in the K18-hACE2 transgenic mouse model in the absence of neutralizing antibodies, but two dose approaches are insufficient to confer protection. The third vaccine dose of the single T cell epitope peptide results in superior generation of effector-memory T cells and tissue-resident memory T cells, and these tertiary vaccine-specific CD8+ T cells are characterized by enhanced polyfunctional cytokine production. Moreover, fate mapping shows that a substantial fraction of the tertiary CD8+ effector-memory T cells develop from re-migrated tissue-resident memory T cells. Thus, repeated booster vaccinations quantitatively and qualitatively improve the CD8+ T cell response leading to protection against otherwise lethal SARS-CoV-2 infection.


Assuntos
COVID-19 , Epitopos de Linfócito T , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Modelos Animais de Doenças , Memória Imunológica , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Vacinas Sintéticas
10.
Cell Rep ; 40(1): 111032, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793635

RESUMO

How mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of cellular metabolism, affects dendritic cell (DC) metabolism and T cell-priming capacity has primarily been investigated in vitro, but how mTORC1 regulates this in vivo remains poorly defined. Here, using mice deficient for mTORC1 component raptor in DCs, we find that loss of mTORC1 negatively affects glycolytic and fatty acid metabolism and maturation of conventional DCs, particularly cDC1s. Nonetheless, antigen-specific CD8+ T cell responses to infection are not compromised and are even enhanced following skin immunization. This is associated with increased activation of Langerhans cells and a subpopulation of EpCAM-expressing cDC1s, of which the latter show an increased physical interaction with CD8+ T cells in situ. Together, this work reveals that mTORC1 limits CD8+ T cell priming in vivo by differentially orchestrating the metabolism and immunogenicity of distinct antigen-presenting cell subsets, which may have implications for clinical use of mTOR inhibitors.


Assuntos
Linfócitos T CD8-Positivos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pele , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Transdução de Sinais , Pele/imunologia , Pele/metabolismo
12.
Front Immunol ; 13: 680559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154089

RESUMO

Human cytomegalovirus (HCMV) is an ubiquitous herpesvirus that can cause serious morbidity and mortality in immunocompromised or immune-immature individuals. A vaccine that induces immunity to CMV in these target populations is therefore highly needed. Previous attempts to generate efficacious CMV vaccines primarily focused on the induction of humoral immunity by eliciting neutralizing antibodies. Current insights encourage that a protective immune response to HCMV might benefit from the induction of virus-specific T cells. Whether addition of antiviral T cell responses enhances the protection by antibody-eliciting vaccines is however unclear. Here, we assessed this query in mouse CMV (MCMV) infection models by developing synthetic vaccines with humoral immunity potential, and deliberately adding antiviral CD8+ T cells. To induce antibodies against MCMV, we developed a DNA vaccine encoding either full-length, membrane bound glycoprotein B (gB) or a secreted variant lacking the transmembrane and intracellular domain (secreted (s)gB). Intradermal immunization with an increasing dose schedule of sgB and booster immunization provided robust viral-specific IgG responses and viral control. Combined vaccination of the sgB DNA vaccine with synthetic long peptides (SLP)-vaccines encoding MHC class I-restricted CMV epitopes, which elicit exclusively CD8+ T cell responses, significantly enhanced antiviral immunity. Thus, the combination of antibody and CD8+ T cell-eliciting vaccines provides a collaborative improvement of humoral and cellular immunity enabling enhanced protection against CMV.


Assuntos
Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/imunologia , Epitopos/imunologia , Imunidade Celular , Imunidade Humoral , Imunização Secundária/métodos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Vacinação , Vacinas de DNA/administração & dosagem , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
13.
Vaccine ; 40(13): 2087-2098, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35177300

RESUMO

Pyroptosis is a recently discovered form of inflammatory programmed necrosis characterized by caspase-1-mediated and gasdermin D-dependent cell death leading to the release of pro-inflammatory cytokines such as Interleukin-1 beta (IL-1ß). Here, we evaluated whether pyroptosis could be exploited in DNA vaccination by incorporating a constitutively active variant of caspase-1 to the antigen-expressing DNA. In vitro, transfection with constitutively active caspase-1 DNA induced pro-IL-1ß maturation and IL-1ß release as well as gasdermin D-dependent cell death. To test active caspase-1 as a genetic adjuvant for the induction of antigen-specific T cell responses, mice were vaccinated intradermally with a DNA vaccine consisting of the active caspase-1 plasmid together with a plasmid encoding an ovalbumin-derived CD8 T cell epitope. Active caspase-1 accelerated and amplified antigen-specific CD8 T cell responses when administered simultaneously with the DNA vaccine at an equimolar dose. Moreover, upon challenge with melanoma cells expressing ovalbumin, mice vaccinated with the antigen vaccine adjuvanted with active caspase-1 showed significantly better survival compared to the non-adjuvanted group. In conclusion, we have developed a novel genetic adjuvant that for the first time employs the pyroptosis pathway to improve DNA vaccination against cancer.


Assuntos
Piroptose , Vacinas de DNA , Animais , Caspase 1/metabolismo , Inflamação , Interleucina-1beta , Camundongos , Ovalbumina , Vacinação
14.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35039463

RESUMO

BACKGROUND: Expression of killer cell lectin-like receptor B1 (KLRB1), the gene encoding the cell surface molecule CD161, is associated with favorable prognosis in many cancers. CD161 is expressed by several lymphocyte populations, but its role and regulation on tumor-specific CD4+ T cells is unknown. METHODS: We examined the clinical impact of CD4+CD161+ T cells in human papillomavirus (HPV)16+ oropharyngeal squamous cell carcinoma (OPSCC), analyzed their contribution in a cohort of therapeutically vaccinated patients and used HPV16-specific CD4+CD161+ tumor-infiltrating lymphocytes and T cell clones for in-depth mechanistic studies. RESULTS: Central and effector memory CD4+ T cells express CD161, but only CD4+CD161+ effector memory T cells (Tem) are associated with improved survival in OPSCC. Therapeutic vaccination activates and expands type 1 cytokine-producing CD4+CD161+ effector T cells. The expression of CD161 is dynamic and follows a pattern opposite of the checkpoint molecules PD1 and CD39. CD161 did not function as an immune checkpoint molecule as demonstrated using multiple experimental approaches using antibodies to block CD161 and gene editing to knockout CD161 expression. Single-cell transcriptomics revealed KLRB1 expression in many T cell clusters suggesting differences in their activation. Indeed, CD4+CD161+ effector cells specifically expressed the transcriptional transactivator SOX4, known to enhance T cell receptor (TCR) signaling via CD3ε. Consistent with this observation, CD4+CD161+ cells respond more vigorously to limiting amounts of cognate antigen in presence of interleukin (IL)-12 and IL-18 compared to their CD161- counterparts. The expression of CD161/KLRB1 and SOX4 was downregulated upon TCR stimulation and this effect was boosted by transforming growth factor (TGF)ß1. CONCLUSION: High levels of CD4+CD161+ Tem are associated with improved survival and our data show that CD161 is dynamically regulated by cell intrinsic and extrinsic factors. CD161 expressing CD4+ T cells rapidly respond to suboptimal antigen stimulation suggesting that CD161, similar to SOX4, is involved in the amplification of TCR signals in CD4+ T cells.


Assuntos
Papillomavirus Humano 16/patogenicidade , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Infecções por Papillomavirus/mortalidade , Linfócitos T CD4-Positivos , Feminino , Humanos , Masculino , Análise de Sobrevida
15.
Gut ; 71(11): 2266-2283, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35074907

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) has the characteristics of high-density desmoplastic stroma, a distinctive immunosuppressive microenvironment and is profoundly resistant to all forms of chemotherapy and immunotherapy, leading to a 5-year survival rate of 9%. Our study aims to add novel small molecule therapeutics for the treatment of PDAC. DESIGN: We have studied whether TAK-981, a novel highly selective and potent small molecule inhibitor of the small ubiquitin like modifier (SUMO) activating enzyme E1 could be used to treat a preclinical syngeneic PDAC mouse model and we have studied the mode of action of TAK-981. RESULTS: We found that SUMOylation, a reversible post-translational modification required for cell cycle progression, is increased in PDAC patient samples compared with normal pancreatic tissue. TAK-981 decreased SUMOylation in PDAC cells at the nanomolar range, thereby causing a G2/M cell cycle arrest, mitotic failure and chromosomal segregation defects. TAK-981 efficiently limited tumour burden in the KPC3 syngeneic mouse model without evidence of systemic toxicity. In vivo treatment with TAK-981 enhanced the proportions of activated CD8 T cells and natural killer (NK) cells but transiently decreased B cell numbers in tumour, peripheral blood, spleen and lymph nodes. Single cell RNA sequencing revealed activation of the interferon response on TAK-981 treatment in lymphocytes including T, B and NK cells. TAK-981 treatment of CD8 T cells ex vivo induced activation of STAT1 and interferon target genes. CONCLUSION: Our findings indicate that pharmacological inhibition of the SUMO pathway represents a potential strategy to target PDAC via a dual mechanism: inhibiting cancer cell cycle progression and activating anti-tumour immunity by inducing interferon signalling.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Ciclo Celular , Proliferação de Células , Interferons , Células Matadoras Naturais , Camundongos , Neoplasias Pancreáticas/patologia , Sumoilação , Microambiente Tumoral , Enzimas Ativadoras de Ubiquitina , Ubiquitinas/metabolismo , Neoplasias Pancreáticas
16.
Front Immunol ; 13: 986863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700204

RESUMO

The development and differentiation of B cells is intimately linked to cell proliferation and the generation of diverse immunoglobulin gene (Ig) repertoires. The ubiquitin E3 ligase HUWE1 controls proliferation, DNA damage responses, and DNA repair, including the base excision repair (BER) pathway. These processes are of crucial importance for B-cell development in the bone marrow, and the germinal center (GC) response, which results in the clonal expansion and differentiation of B cells expressing high affinity immunoglobulins. Here, we re-examined the role of HUWE1 in B-cell proliferation and Ig gene diversification, focusing on its involvement in somatic hypermutation (SHM) and class switch recombination (CSR). B-cell-specific deletion of Huwe1 resulted in impaired development, differentiation and maturation of B cells in the bone marrow and peripheral lymphoid organs. HUWE1 deficiency diminished SHM and CSR by impairing B-cell proliferation and AID expression upon activation in vitro and in vivo, and was unrelated to the HUWE1-dependent regulation of the BER pathway. Interestingly, we found that HUWE1-deficient B cells showed increased mRNA expression of Myc target genes upon in vitro activation despite diminished proliferation. Our results confirm that the E3 ligase HUWE1 is an important contributor in coordinating the rapid transition of antigen naïve, resting B cells into antigen-activated B cells and regulates mutagenic processes in B cells by controlling AID expression and the post-transcriptional output of Myc target genes.


Assuntos
Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Switching de Imunoglobulina/genética , Linfócitos B , Reparo do DNA , Diferenciação Celular/genética
17.
Cell ; 184(14): 3774-3793.e25, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115982

RESUMO

Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.


Assuntos
Citomegalovirus/fisiologia , Macrófagos Alveolares/virologia , Animais , Apresentação de Antígeno , Efeito Espectador , Ciclo Celular , Linhagem Celular Transformada , Reprogramação Celular , Citomegalovirus/patogenicidade , Citomegalovirus/ultraestrutura , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Proteínas de Fluorescência Verde/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/ultraestrutura , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Células-Tronco/patologia , Replicação Viral/fisiologia , Via de Sinalização Wnt
18.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879600

RESUMO

BACKGROUND: High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective. METHODS: IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.IL-6) and immunotherapy-sensitive TC-1. CONTROL: Effects on therapeutic vaccination-induced tumor regression, recurrence and survival as well on T cells and myeloid cells in the tumor microenvironment were studied. The effects of IL-6 signaling in macrophages under therapy conditions were studied in Il6rafl/fl×LysMcre+ mice. RESULTS: Our therapeutic vaccination protocol elicits a strong tumor-specific CD8+ T-cell response, leading to enhanced intratumoral T-cell infiltration and recruitment of tumoricidal macrophages. Blockade of IL-6 signaling exacerbated tumor outgrowth, reflected by fewer complete regressions and more recurrences after therapeutic vaccination, especially in TC-1.IL-6 tumor-bearing mice. Early IL-6 signaling blockade partly inhibited the development of the vaccine-induced CD8+ T-cell response. However, the main mechanism was the malfunction of macrophages during therapy-induced tumor regression. Therapy efficacy was impaired in Il6rafl/fl×LysMcre+ but not cre-negative control mice, while no differences in the vaccine-induced CD8+ T-cell response were found between these mice. IL-6 signaling blockade resulted in decreased expression of suppressor of cytokine signaling 3, essential for effective M1-type function in macrophages, and increased expression of the phagocytic checkpoint molecule signal-regulatory protein alpha by macrophages. CONCLUSION: IL-6 signaling is critical for macrophage function under circumstances of immunotherapy-induced tumor tissue destruction, in line with the acute inflammatory functions of IL-6 signaling described in infections.


Assuntos
Vacinas Anticâncer/administração & dosagem , Interleucina-6/metabolismo , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas E7 de Papillomavirus/administração & dosagem , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Injeções Subcutâneas , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/metabolismo , Oligodesoxirribonucleotídeos/imunologia , Proteínas E7 de Papillomavirus/imunologia , Fenótipo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
19.
iScience ; 24(1): 101954, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458613

RESUMO

Factors that govern the complex formation of memory T cells are not completely understood. A better understanding of the development of memory T cell heterogeneity is however required to enhance vaccination and immunotherapy approaches. Here we examined the impact of pathogen- and tissue-specific cues on memory CD8+ T cell heterogeneity using high-dimensional single-cell mass cytometry and a tailored bioinformatics pipeline. We identified distinct populations of pathogen-specific CD8+ T cells that uniquely connected to a specific pathogen or associated to multiple types of acute and persistent infections. In addition, the tissue environment shaped the memory CD8+ T cell heterogeneity, albeit to a lesser extent than infection. The programming of memory CD8+ T cell differentiation during acute infection is eventually superseded by persistent infection. Thus, the plethora of distinct memory CD8+ T cell subsets that arise upon infection is dominantly sculpted by the pathogen-specific cues and further shaped by the tissue environment.

20.
Cells ; 10(1)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467606

RESUMO

Tissue-resident memory T (TRM) cells mediate potent local innate and adaptive immune responses and provide long-lasting protective immunity. TRM cells localize to many different tissues, including barrier tissues, and play a crucial role in protection against infectious and malignant disease. The formation and maintenance of TRM cells are influenced by numerous factors, including inflammation, antigen triggering, and tissue-specific cues. Emerging evidence suggests that these signals also contribute to heterogeneity within the TRM cell compartment. Here, we review the phenotypic and functional heterogeneity of CD8+ TRM cells at different tissue sites and the molecular determinants defining CD8+ TRM cell subsets. We further discuss the possibilities of targeting the unique cell surface molecules, cytokine and chemokine receptors, transcription factors, and metabolic features of TRM cells for therapeutic purposes. Their crucial role in immune protection and their location at the frontlines of the immune defense make TRM cells attractive therapeutic targets. A better understanding of the possibilities to selectively modulate TRM cell populations may thus improve vaccination and immunotherapeutic strategies employing these potent immune cells.


Assuntos
Memória Imunológica , Linfócitos T/citologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/citologia , Vacinas Anticâncer/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Imunoterapia , Integrinas/metabolismo , Lectinas Tipo C/metabolismo , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Neoplasias/metabolismo , Fenótipo , Receptores de Citocinas/metabolismo , Transdução de Sinais , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA