Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Transl Med ; 16(744): eadk6213, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657025

RESUMO

The Fontan operation is the current standard of care for single-ventricle congenital heart disease. Individuals with a Fontan circulation (FC) exhibit central venous hypertension and face life-threatening complications of hepatic fibrosis, known as Fontan-associated liver disease (FALD). The fundamental biology and mechanisms of FALD are little understood. Here, we generated a transcriptomic and epigenomic atlas of human FALD at single-cell resolution using multiomic snRNA-ATAC-seq. We found profound cell type-specific transcriptomic and epigenomic changes in FC livers. Central hepatocytes (cHep) exhibited the most substantial changes, featuring profound metabolic reprogramming. These cHep changes preceded substantial activation of hepatic stellate cells and liver fibrosis, suggesting cHep as a potential first "responder" in the pathogenesis of FALD. We also identified a network of ligand-receptor pairs that transmit signals from cHep to hepatic stellate cells, which may promote their activation and liver fibrosis. We further experimentally demonstrated that activins A and B promote fibrotic activation in vitro and identified mechanisms of activin A's transcriptional activation in FALD. Together, our single-cell transcriptomic and epigenomic atlas revealed mechanistic insights into the pathogenesis of FALD and may aid identification of potential therapeutic targets.


Assuntos
Técnica de Fontan , Células Estreladas do Fígado , Hepatócitos , Hepatopatias , Humanos , Epigenômica , Técnica de Fontan/efeitos adversos , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Hepatopatias/etnologia , Hepatopatias/patologia , Multiômica , Análise de Célula Única , Transcriptoma
2.
Sensors (Basel) ; 22(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36366023

RESUMO

Diesel engines have a wide range of functions in the industrial and military fields. An urgent problem to be solved is how to diagnose and identify their faults effectively and timely. In this paper, a diesel engine acoustic fault diagnosis method based on variational modal decomposition mapping Mel frequency cepstral coefficients (MFCC) and long-short-term memory network is proposed. Variational mode decomposition (VMD) is used to remove noise from the original signal and differentiate the signal into multiple modes. The sound pressure signals of different modes are mapped to the Mel filter bank in the frequency domain, and then the Mel frequency cepstral coefficients of the respective mode signals are calculated in the mapping range of frequency domain, and the optimized Mel frequency cepstral coefficients are used as the input of long and short time memory network (LSTM) which is trained and verified, and the fault diagnosis model of the diesel engine is obtained. The experimental part compares the fault diagnosis effects of different feature extraction methods, different modal decomposition methods and different classifiers, finally verifying the feasibility and effectiveness of the method proposed in this paper, and providing solutions to the problem of how to realise fault diagnosis using acoustic signals.


Assuntos
Acústica , Ruído
3.
Micromachines (Basel) ; 13(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295997

RESUMO

At present, rotating machinery is widely used in all walks of life and has become the key equipment in many production processes. It is of great significance to strengthen the condition monitoring of rotating machinery, timely diagnose and eliminate faults to ensure the safe and efficient operation of rotating machinery and improve the economic benefits of enterprises. When the state of a rotating machine deteriorates, the thermal energy that is much more than its normal operation will be generated due to the increase in the friction between the components or other factors. Therefore, using the infrared thermal camera to collect the infrared thermal images of rotating machinery and judge the health status of rotating machinery by observing the temperature distribution in the thermal images is often more rapid and effective than other technologies. Nevertheless, after decades of development, the research achievements of infrared thermography (IRT) and its application in various industrial fields are numerous and complex, and there is a lack of systematic sorting and summary of the achievements in this field. Accordingly, this paper summarizes the development and application of IRT as a non-contact and non-invasive tool for equipment condition monitoring and fault diagnosis, and introduces the basic theory of IRT, image processing technology and fault diagnosis methods of rotating machinery in detail. Finally, the review is summarized and some future potential topics are proposed, which will make the subject easier for beginners and non-experts to understand.

4.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632293

RESUMO

It is critical to deploy wireless data transmission technologies remotely, in real-time, to monitor the health state of diesel engines dynamically. The usual approach to data compression is to collect data first, then compress it; however, we cannot ensure the correctness and efficiency of the data. Based on sparse Bayesian optimization block learning, this research provides a method for compression reconstruction and fault diagnostics of diesel engine vibration data. This method's essential contribution is combining compressive sensing technology with fault diagnosis. To achieve a better diagnosis effect, we can effectively improve the wireless transmission efficiency of the vibration signal. First, the dictionary is dynamically updated by learning the dictionary using singular value decomposition to produce the ideal sparse form. Second, a block sparse Bayesian learning boundary optimization approach is utilized to recover structured non-sparse signals rapidly. A detailed assessment index of the data compression effect is created. Finally, the experimental findings reveal that the approach provided in this study outperforms standard compression methods in terms of compression efficiency and accuracy and its ability to produce the desired fault diagnostic effect, proving the usefulness of the proposed method.


Assuntos
Compressão de Dados , Algoritmos , Teorema de Bayes , Compressão de Dados/métodos , Fenômenos Físicos , Vibração
5.
Stem Cell Res Ther ; 11(1): 196, 2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448362

RESUMO

BACKGROUND: Mesendodermal formation during early gastrulation requires the expression of lineage-specific genes, while the regulatory mechanisms during this process have not yet been fully illustrated. TATA box-binding protein (TBP) and TBP-like factors are general transcription factors responsible for the transcription initiation by recruiting the preinitiation complex to promoter regions. However, the role of TBP family members in the regulation of mesendodermal specification remains largely unknown. METHODS: We used an in vitro mesendodermal differentiation system of human embryonic stem cells (hESCs), combining with the microarray and quantitative polymerase chain reaction (qRT-PCR) analysis, loss of function and gain of function to determine the function of the TBP family member TBP-related factor 3 (TRF3) during mesendodermal differentiation of hESCs. The chromatin immunoprecipitation (ChIP) and biochemistry analysis were used to determine the binding of TRF3 to the promoter region of key mesendodermal genes. RESULTS: The mesendodermal differentiation of hESCs was confirmed by the microarray gene expression profile, qRT-PCR, and immunocytochemical staining. The expression of TRF3 mRNA was enhanced during mesendodermal differentiation of hESCs. The TRF3 deficiency did not affect the pluripotent marker expression, alkaline phosphatase activity, and cell cycle distribution of undifferentiated hESCs or the expression of early neuroectodermal genes during neuroectodermal differentiation. During the mesendodermal differentiation, the expression of pluripotency markers decreased in both wild-type and TRF3 knockout (TRF3-/-) cells, while the TRF3 deficiency crippled the expression of the mesendodermal markers. The reintroduction of TRF3 into the TRF3-/- hESCs rescued inhibited mesendodermal differentiation. Mechanistically, the TRF3 binding profile was significantly shifted to the mesendodermal specification during mesendodermal differentiation of hESCs based on the ChIP-seq data. Moreover, ChIP and ChIP-qPCR analysis showed that TRF3 was enriched at core promoter regions of mesendodermal developmental genes, EOMESODERMIN, BRACHYURY, mix paired-like homeobox, and GOOSECOID homeobox, during mesendodermal differentiation of hESCs. CONCLUSIONS: These results reveal that the TBP family member TRF3 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation. However, it directs mesendodermal lineage commitment of hESCs via specifically promoting the transcription of key mesendodermal transcription factors. These findings provide new insights into the function and mechanisms of the TBP family member in hESC early lineage specification.


Assuntos
Células-Tronco Embrionárias Humanas , Proteínas Semelhantes à Proteína de Ligação a TATA-Box , Proteínas de Transporte , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas Nucleares , TATA Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/genética , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
6.
Aging (Albany NY) ; 12(8): 7411-7430, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32343674

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in biomedical applications. However, the immature state of cardiomyocytes obtained using existing protocols limits the application of hPSC-CMs. Unlike adult cardiac myocytes, hPSC-CMs generate ATP through an immature metabolic pathway-aerobic glycolysis, instead of mitochondrial oxidative phosphorylation (OXPHOS). Hence, metabolic switching is critical for functional maturation in hPSC-CMs. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolism, which may help promote cardiac maturation during development. In this study, we investigated the effects of PGC-1α and its activator ZLN005 on the maturation of human embryonic stem cell-derived cardiomyocyte (hESC-CM). hESC-CMs were generated using a chemically defined differentiation protocol and supplemented with either ZLN005 or DMSO (control) on differentiating days 10 to 12. Biological assays were then performed around day 30. ZLN005 treatment upregulated the expressions of PGC-1α and mitochondrial function-related genes in hESC-CMs and induced more mature energy metabolism compared with the control group. In addition, ZLN005 treatment increased cell sarcomere length, improved cell calcium handling, and enhanced intercellular connectivity. These findings support an effective approach to promote hESC-CM maturation, which is critical for the application of hESC-CM in disease modeling, drug screening, and engineering cardiac tissue.


Assuntos
Benzimidazóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Diferenciação Celular , Células Cultivadas , Proteínas de Choque Térmico , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Hipoglicemiantes , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/biossíntese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/efeitos dos fármacos , Engenharia Tecidual
8.
Nucleic Acids Res ; 48(5): 2733-2748, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32009146

RESUMO

Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Nucleotidiltransferases/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Células Procarióticas/metabolismo , Animais , Biocatálise , Linhagem Celular , Sobrevivência Celular , Desenvolvimento Embrionário , Humanos , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Polinucleotídeo Adenililtransferase/química , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Especificidade por Substrato , Xenopus
9.
Stem Cells ; 37(11): 1401-1415, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31348575

RESUMO

Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Sequência de Bases , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Citometria de Fluxo , Proteína Goosecoid/genética , Proteína Goosecoid/metabolismo , Histona-Lisina N-Metiltransferase/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
10.
Acta Pharmacol Sin ; 38(12): 1663-1672, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28713161

RESUMO

Emerging evidence suggests that Ca2+ signals are important for the self-renewal and differentiation of human embryonic stem cells (hESCs). However, little is known about the physiological and pharmacological properties of the Ca2+-handling machinery in hESCs. In this study we used RT-PCR and Western blotting to analyze the expression profiles of genes encoding Ca2+-handling proteins; we also used confocal Ca2+ imaging and pharmacological approaches to determine the contribution of the Ca2+-handling machinery to the regulation of Ca2+ signaling in hESCs. We revealed that hESCs expressed pluripotent markers and various Ca2+-handling-related genes. ATP-induced Ca2+ transients in almost all hESCs were inhibited by the inositol-1,4,5-triphosphate receptor (IP3R) blocker 2-APB or xestospongin C. In addition, Ca2+ transients were induced by a ryanodine receptor (RyR) activator, caffeine, in 10%-15% of hESCs and were blocked by ryanodine, whereas caffeine and ATP did not have additive effects. Moreover, store-operated Ca2+ entry (SOCE) but not voltage-operated Ca2+ channel-mediated Ca2+ entry was observed. Inhibition of sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) by thapsigargin induced a significant increase in the cytosolic free Ca2+ concentration ([Ca2+]i). For the Ca2+ extrusion pathway, inhibition of plasma membrane Ca2+ pumps (PMCAs) by carboxyeosin induced a slow increase in [Ca2+]i, whereas the Na+/Ca2+ exchanger (NCX) inhibitor KBR7943 induced a rapid increase in [Ca2+]i. Taken together, increased [Ca2+]i is mainly mediated by Ca2+ release from intracellular stores via IP3Rs. In addition, RyRs function in a portion of hESCs, thus indicating heterogeneity of the Ca2+-signaling machinery in hESCs; maintenance of low [Ca2+]i is mediated by uptake of cytosolic Ca2+ into the ER via SERCA and extrusion of Ca2+ out of cells via NCX and PMCA in hESCs.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Trifosfato de Adenosina/farmacologia , Compostos de Boro/farmacologia , Cálcio/análise , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Compostos Macrocíclicos/farmacologia , Oxazóis/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia
11.
Stem Cells ; 34(6): 1527-40, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26866517

RESUMO

Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (ph8(-/Y) ) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endodermal differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (ph8(+/Y) ) and ph8(-/Y) ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockdown of pmaip1 mimicked the phenotype of ph8(-/Y) by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of ph8(-/Y) ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways. Stem Cells 2016;34:1527-1540.


Assuntos
Diferenciação Celular , Desmetilação , Histona Desmetilases/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Mesoderma/citologia , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA