Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biochem J ; 478(24): 4187-4202, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34940832

RESUMO

Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.


Assuntos
Antígenos , Linfócitos T CD8-Positivos , Antígenos de Histocompatibilidade Classe I , Modelos Imunológicos , Peptídeos , Receptores de Antígenos de Linfócitos T , Animais , Antígenos/química , Antígenos/imunologia , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos/química , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia
2.
Front Immunol ; 12: 614276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717099

RESUMO

The human immune system relies on the capability of CD8+ T cells to patrol body cells, spot infected cells and eliminate them. This cytotoxic response is supposed to be limited to infected cells to avoid killing of healthy cells. To enable this, CD8+ T cells have T Cell Receptors (TCRs) which should discriminate between self and non-self through the recognition of antigenic peptides bound to Human Leukocyte Antigen class I (HLA-I) complexes-i.e., HLA-I immunopeptidomes-of patrolled cells. The majority of these antigenic peptides are produced by proteasomes through either peptide hydrolysis or peptide splicing. Proteasome-generated cis-spliced peptides derive from a given antigen, are immunogenic and frequently presented by HLA-I complexes. Theoretically, they also have a very large sequence variability, which might impinge upon our model of self/non-self discrimination and central and peripheral CD8+ T cell tolerance. Indeed, a large variety of cis-spliced epitopes might enlarge the pool of viral-human zwitter epitopes, i.e., peptides that may be generated with the exact same sequence from both self (human) and non-self (viral) antigens. Antigenic viral-human zwitter peptides may be recognized by CD8+ thymocytes and T cells, induce clonal deletion or other tolerance processes, thereby restraining CD8+ T cell response against viruses. To test this hypothesis, we computed in silico the theoretical frequency of zwitter non-spliced and cis-spliced epitope candidates derived from human proteome (self) and from the proteomes of a large pool of viruses (non-self). We considered their binding affinity to the representative HLA-A*02:01 complex, self-antigen expression in Medullary Thymic Epithelial cells (mTECs) and the relative frequency of non-spliced and cis-spliced peptides in HLA-I immunopeptidomes. Based on the present knowledge of proteasome-catalyzed peptide splicing and neglecting CD8+ TCR degeneracy, our study suggests that, despite their frequency, the portion of the cis-spliced peptides we investigated could only marginally impinge upon the variety of functional CD8+ cytotoxic T cells (CTLs) involved in anti-viral response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Tolerância Imunológica , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína , Sequência de Aminoácidos , Apresentação de Antígeno/imunologia , Deleção Clonal/imunologia , Epitopos de Linfócito T/imunologia , HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Modelos Moleculares , Peptídeos/imunologia , Ligação Proteica/imunologia , Conformação Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma
3.
Nat Med ; 24(9): 1330-1336, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30038217

RESUMO

Plasmodium vivax causes approximately 100 million clinical malaria cases yearly1,2. The basis of protective immunity is poorly understood and thought to be mediated by antibodies3,4. Cytotoxic CD8+ T cells protect against other intracellular parasites by detecting parasite peptides presented by human leukocyte antigen class I on host cells. Cytotoxic CD8+ T cells kill parasite-infected mammalian cells and intracellular parasites by releasing their cytotoxic granules5,6. Perforin delivers the antimicrobial peptide granulysin and death-inducing granzymes into the host cell, and granulysin then delivers granzymes into the parasite. Cytotoxic CD8+ T cells were thought to have no role against Plasmodium spp. blood stages because red blood cells generally do not express human leukocyte antigen class I7. However, P. vivax infects reticulocytes that retain the protein translation machinery. Here we show that P. vivax-infected reticulocytes express human leukocyte antigen class I. Infected patient circulating CD8+ T cells highly express cytotoxic proteins and recognize and form immunological synapses with P. vivax-infected reticulocytes in a human leukocyte antigen-dependent manner, releasing their cytotoxic granules to kill both host cell and intracellular parasite, preventing reinvasion. P. vivax-infected reticulocytes and parasite killing is perforin independent, but depends on granulysin, which generally efficiently forms pores only in microbial membranes8. We find that P. vivax depletes cholesterol from the P. vivax-infected reticulocyte cell membrane, rendering it granulysin-susceptible. This unexpected T cell defense might be mobilized to improve P. vivax vaccine efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Plasmodium vivax/fisiologia , Reticulócitos/parasitologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Feminino , Antígenos HLA/metabolismo , Humanos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Malária/sangue , Masculino , Reticulócitos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA