Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255891

RESUMO

As an essential component of our innate immune system, the complement system is responsible for our defense against pathogens. The complement cascade has complex roles in the central nervous system (CNS), most of what we know about it stems from its role in brain development. However, in recent years, numerous reports have implicated the classical complement cascade in both brain development and decline. More specifically, complement dysfunction has been implicated in neurodegenerative disorders, such as Alzheimer's disease (AD), which is the most common form of dementia. Synapse loss is one of the main pathological hallmarks of AD and correlates with memory impairment. Throughout the course of AD progression, synapses are tagged with complement proteins and are consequently removed by microglia that express complement receptors. Notably, astrocytes are also capable of secreting signals that induce the expression of complement proteins in the CNS. Both astrocytes and microglia are implicated in neuroinflammation, another hallmark of AD pathogenesis. In this review, we provide an overview of previously known and newly established roles for the complement cascade in the CNS and we explore how complement interactions with microglia, astrocytes, and other risk factors such as TREM2 and ApoE4 modulate the processes of neurodegeneration in both amyloid and tau models of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/etiologia , Proteínas do Sistema Complemento , Sistema Nervoso Central , Transdução de Sinais , Ativação do Complemento
2.
Alzheimers Dement ; 19(6): 2677-2696, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36975090

RESUMO

INTRODUCTION: At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS: The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION: This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Microglia/patologia , Inflamação , Apolipoproteínas E/genética
3.
BMC Pediatr ; 21(1): 322, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289819

RESUMO

BACKGROUND: Recent decreases in neonatal mortality have been slower than expected for most countries. This study aims to predict the risk of neonatal mortality using only data routinely available from birth records in the largest city of the Americas. METHODS: A probabilistic linkage of every birth record occurring in the municipality of São Paulo, Brazil, between 2012 e 2017 was performed with the death records from 2012 to 2018 (1,202,843 births and 447,687 deaths), and a total of 7282 neonatal deaths were identified (a neonatal mortality rate of 6.46 per 1000 live births). Births from 2012 and 2016 (N = 941,308; or 83.44% of the total) were used to train five different machine learning algorithms, while births occurring in 2017 (N = 186,854; or 16.56% of the total) were used to test their predictive performance on new unseen data. RESULTS: The best performance was obtained by the extreme gradient boosting trees (XGBoost) algorithm, with a very high AUC of 0.97 and F1-score of 0.55. The 5% births with the highest predicted risk of neonatal death included more than 90% of the actual neonatal deaths. On the other hand, there were no deaths among the 5% births with the lowest predicted risk. There were no significant differences in predictive performance for vulnerable subgroups. The use of a smaller number of variables (WHO's five minimum perinatal indicators) decreased overall performance but the results still remained high (AUC of 0.91). With the addition of only three more variables, we achieved the same predictive performance (AUC of 0.97) as using all the 23 variables originally available from the Brazilian birth records. CONCLUSION: Machine learning algorithms were able to identify with very high predictive performance the neonatal mortality risk of newborns using only routinely collected data.


Assuntos
Mortalidade Infantil , Morte Perinatal , Declaração de Nascimento , Brasil/epidemiologia , Feminino , Humanos , Recém-Nascido , Aprendizado de Máquina , Gravidez
4.
PLoS One ; 16(6): e0252873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143814

RESUMO

INTRODUCTION: Little is understood about the socioeconomic predictors of tooth loss, a condition that can negatively impact individual's quality of life. The goal of this study is to develop a machine-learning algorithm to predict complete and incremental tooth loss among adults and to compare the predictive performance of these models. METHODS: We used data from the National Health and Nutrition Examination Survey from 2011 to 2014. We developed multiple machine-learning algorithms and assessed their predictive performances by examining the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The extreme gradient boosting trees presented the highest performance in the prediction of edentulism (AUC = 88.7%; 95%CI: 87.1, 90.2), the absence of a functional dentition (AUC = 88.3% 95%CI: 87.3,89.3) and for predicting missing any tooth (AUC = 83.2%; 95%CI, 82.0, 84.4). Although, as expected, age and routine dental care emerged as strong predictors of tooth loss, the machine learning approach identified additional predictors, including socioeconomic conditions. Indeed, the performance of models incorporating socioeconomic characteristics was better at predicting tooth loss than those relying on clinical dental indicators alone. CONCLUSIONS: Future application of machine-learning algorithm, with longitudinal cohorts, for identification of individuals at risk for tooth loss could assist clinicians to prioritize interventions directed toward the prevention of tooth loss.


Assuntos
Perda de Dente/epidemiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Política de Saúde , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Qualidade de Vida , Curva ROC , Fatores Socioeconômicos
5.
J Neuroinflammation ; 18(1): 54, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33612100

RESUMO

BACKGROUND: The lack of effective treatments for Alzheimer's disease (AD) reflects an incomplete understanding of disease mechanisms. Alterations in proteins involved in mitochondrial dynamics, an essential process for mitochondrial integrity and function, have been reported in AD brains. Impaired mitochondrial dynamics causes mitochondrial dysfunction and has been associated with cognitive impairment in AD. Here, we investigated a possible link between pro-inflammatory interleukin-1 (IL-1), mitochondrial dysfunction, and cognitive impairment in AD models. METHODS: We exposed primary hippocampal cell cultures to amyloid-ß oligomers (AßOs) and carried out AßO infusions into the lateral cerebral ventricle of cynomolgus macaques to assess the impact of AßOs on proteins that regulate mitochondrial dynamics. Where indicated, primary cultures were pre-treated with mitochondrial division inhibitor 1 (mdivi-1), or with anakinra, a recombinant interleukin-1 receptor (IL-1R) antagonist used in the treatment of rheumatoid arthritis. Cognitive impairment was investigated in C57BL/6 mice that received an intracerebroventricular (i.c.v.) infusion of AßOs in the presence or absence of mdivi-1. To assess the role of interleukin-1 beta (IL-1ß) in AßO-induced alterations in mitochondrial proteins and memory impairment, interleukin receptor-1 knockout (Il1r1-/-) mice received an i.c.v. infusion of AßOs. RESULTS: We report that anakinra prevented AßO-induced alteration in mitochondrial dynamics proteins in primary hippocampal cultures. Altered levels of proteins involved in mitochondrial fusion and fission were observed in the brains of cynomolgus macaques that received i.c.v. infusions of AßOs. The mitochondrial fission inhibitor, mdivi-1, alleviated synapse loss and cognitive impairment induced by AßOs in mice. In addition, AßOs failed to cause alterations in expression of mitochondrial dynamics proteins or memory impairment in Il1r1-/- mice. CONCLUSION: These findings indicate that IL-1ß mediates the impact of AßOs on proteins involved in mitochondrial dynamics and that strategies aimed to prevent pathological alterations in those proteins may counteract synapse loss and cognitive impairment in AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Interleucina-1beta/biossíntese , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Dinâmica Mitocondrial/fisiologia , Fragmentos de Peptídeos/toxicidade , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Macaca fascicularis , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos
6.
Stem Cell Res Ther ; 10(1): 332, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747944

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton's jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer's disease-linked amyloid beta oligomers (AßOs). METHODS: We isolated and characterized EVs released by human Wharton's jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AßOs. RESULTS: hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AßOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AßOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. CONCLUSIONS: hMSC-EVs protected hippocampal neurons from damage induced by AßOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , Neurônios/patologia , Neuroproteção , Estresse Oxidativo , Sinapses/patologia , Geleia de Wharton/citologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Exossomos/metabolismo , Exossomos/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Hipocampo/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Multimerização Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sinapses/efeitos dos fármacos
7.
CNS Drugs ; 33(3): 209-223, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30511349

RESUMO

The current absence of effective treatments for Alzheimer's disease (AD) and Parkinson's disease (PD) reflects an incomplete knowledge of the underlying disease processes. Considerable efforts have been made to investigate the central pathological features of these diseases, giving rise to numerous attempts to develop compounds that interfere with such features. However, further characterization of the molecular targets within the interconnected AD and PD pathways is still required. Impaired brain insulin signaling has emerged as a feature that contributes to neuronal dysfunction in both AD and PD, leading to strategies aiming at restoring this pathway in the brain. Long-acting glucagon-like peptide-1 (GLP-1) analogues marketed for treatment of type 2 diabetes mellitus have been tested and have shown encouraging protective actions in experimental models of AD and PD as well as in initial clinical trials. We review studies revealing the neuroprotective actions of GLP-1 analogues in pre-clinical models of AD and PD and promising results from recent clinical trials.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Resistência à Insulina , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Doença de Parkinson/metabolismo
8.
J Pathol ; 245(1): 85-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29435980

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-ß oligomers (AßOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AßOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Liraglutida/farmacologia , Memória/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Sinapses/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Receptor de Insulina/metabolismo , Sinapses/efeitos dos fármacos
9.
J Neurosci ; 34(41): 13629-43, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297091

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-ß (Aß) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aß oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aß oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aß oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aß oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aß oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Microglia/patologia , Microinjeções , Emaranhados Neurofibrilares/patologia , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Sinapses/patologia , Sinapses/fisiologia , Sinapses/ultraestrutura
10.
BMC Microbiol ; 14: 211, 2014 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-25085553

RESUMO

BACKGROUND: The ability of S. pneumoniae to generate infections depends on the restrictions imposed by the host's immunity, in order to prevent the bacterium from spreading from the nasopharynx to other tissues, such as the brain. Some authors claim that strains of S. pneumoniae, which fail to survive in the bloodstream, can enter the brain directly from the nasal cavity by axonal transport through the olfactory and/or trigeminal nerves. However, from the immunological point of view, glial cells are far more responsive to bacterial infections than are neurons. This hypothesis is consistent with several recent reports showing that bacteria can infect glial cells from the olfactory bulb and trigeminal ganglia. Since our group previously demonstrated that Schwann cells (SCs) express a functional and appropriately regulated mannose receptor (MR), we decided to test whether SCs are involved in the internalization of S. pneumoniae via MR. RESULTS: Immediately after the interaction step, as well as 3 h later, the percentage of association was approximately 56.5%, decreasing to 47.2% and 40.8% after 12 and 24 h, respectively. Competition assays by adding a 100-fold excess of mannan prior to the S. pneumoniae infection reduced the number of infected cells at 3 and 24 h. A cytochemistry assay with Man/BSA-FITC binding was performed in order to verify a possible overlap between mannosylated ligands and internalized bacteria. Incubation of the SCs with Man/BSA-FITC resulted in a large number of intracellular S. pneumoniae, with nearly complete loss of the capsule. Moreover, the anti-pneumococcal antiserum staining colocalized with the internalized man/BSA-FITC, suggesting that both markers are present within the same endocytic compartment of the SC. CONCLUSIONS: Our data offer novel evidence that SCs could be essential for pneumococcal cells to escape phagocytosis and killing by innate immune cells. On the other hand, the results also support the idea that SCs are immunocompetent cells of the PNS that can mediate an efficient immune response against pathogens via MR.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Células de Schwann/imunologia , Células de Schwann/microbiologia , Streptococcus pneumoniae/imunologia , Animais , Células Cultivadas , Receptor de Manose , Ratos Wistar
11.
Cell Metab ; 18(6): 831-43, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24315369

RESUMO

Alzheimer's disease (AD) and type 2 diabetes appear to share similar pathogenic mechanisms. dsRNA-dependent protein kinase (PKR) underlies peripheral insulin resistance in metabolic disorders. PKR phosphorylates eukaryotic translation initiation factor 2α (eIF2α-P), and AD brains exhibit elevated phospho-PKR and eIF2α-P levels. Whether and how PKR and eIF2α-P participate in defective brain insulin signaling and cognitive impairment in AD are unknown. We report that ß-amyloid oligomers, AD-associated toxins, activate PKR in a tumor necrosis factor α (TNF-α)-dependent manner, resulting in eIF2α-P, neuronal insulin receptor substrate (IRS-1) inhibition, synapse loss, and memory impairment. Brain phospho-PKR and eIF2α-P were elevated in AD animal models, including monkeys given intracerebroventricular oligomer infusions. Oligomers failed to trigger eIF2α-P and cognitive impairment in PKR(-/-) and TNFR1(-/-) mice. Bolstering insulin signaling rescued phospho-PKR and eIF2α-P. Results reveal pathogenic mechanisms shared by AD and diabetes and establish that proinflammatory signaling mediates oligomer-induced IRS-1 inhibition and PKR-dependent synapse and memory loss.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/metabolismo , Polímeros/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , eIF-2 Quinase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Haplorrinos/metabolismo , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Polímeros/química , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , eIF-2 Quinase/deficiência , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA