Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
2.
Comput Struct Biotechnol J ; 23: 2141-2151, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38827235

RESUMO

Molecular docking is a widely used technique in drug discovery to predict the binding mode of a given ligand to its target. However, the identification of the near-native binding pose in docking experiments still represents a challenging task as the scoring functions currently employed by docking programs are parametrized to predict the binding affinity, and, therefore, they often fail to correctly identify the ligand native binding conformation. Selecting the correct binding mode is crucial to obtaining meaningful results and to conveniently optimizing new hit compounds. Deep learning (DL) algorithms have been an area of a growing interest in this sense for their capability to extract the relevant information directly from the protein-ligand structure. Our review aims to present the recent advances regarding the development of DL-based pose selection approaches, discussing limitations and possible future directions. Moreover, a comparison between the performances of some classical scoring functions and DL-based methods concerning their ability to select the correct binding mode is reported. In this regard, two novel DL-based pose selectors developed by us are presented.

3.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711119

RESUMO

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Assuntos
Oxirredutases do Álcool , Proteínas de Ligação a DNA , Melanoma , Humanos , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Melanoma/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Virus Res ; 343: 199356, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490582

RESUMO

Coronaviruses contain one of the largest genomes among the RNA viruses, coding for 14-16 non-structural proteins (nsp) that are involved in proteolytic processing, genome replication and transcription, and four structural proteins that build the core of the mature virion. Due to conservation across coronaviruses, nsps form a group of promising drug targets as their inhibition directly affects viral replication and, therefore, progression of infection. A minimal but fully functional replication and transcription complex was shown to be formed by one RNA-dependent RNA polymerase (nsp12), one nsp7, two nsp8 accessory subunits, and two helicase (nsp13) enzymes. Our approach involved, targeting nsp12 and nsp13 to allow multiple starting point to interfere with virus infection progression. Here we report a combined in-vitro repurposing screening approach, identifying new and confirming reported SARS-CoV-2 nsp12 and nsp13 inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Reposicionamento de Medicamentos , RNA Polimerases Dirigidas por DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo
5.
J Cheminform ; 16(1): 21, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395961

RESUMO

The conversion of chemical structures into computer-readable descriptors, able to capture key structural aspects, is of pivotal importance in the field of cheminformatics and computer-aided drug design. Molecular fingerprints represent a widely employed class of descriptors; however, their generation process is time-consuming for large databases and is susceptible to bias. Therefore, descriptors able to accurately detect predefined structural fragments and devoid of lengthy generation procedures would be highly desirable. To meet additional needs, such descriptors should also be interpretable by medicinal chemists, and suitable for indexing databases with trillions of compounds. To this end, we developed-as integral part of EXSCALATE, Dompé's end-to-end drug discovery platform-the DompeKeys (DK), a new substructure-based descriptor set, which encodes the chemical features that characterize compounds of pharmaceutical interest. DK represent an exhaustive collection of curated SMARTS strings, defining chemical features at different levels of complexity, from specific functional groups and structural patterns to simpler pharmacophoric points, corresponding to a network of hierarchically interconnected substructures. Because of their extended and hierarchical structure, DK can be used, with good performance, in different kinds of applications. In particular, we demonstrate how they are very well suited for effective mapping of chemical space, as well as substructure search and virtual screening. Notably, the incorporation of DK yields highly performing machine learning models for the prediction of both compounds' activity and metabolic reaction occurrence. The protocol to generate the DK is freely available at https://dompekeys.exscalate.eu and is fully integrated with the Molecular Anatomy protocol for the generation and analysis of hierarchically interconnected molecular scaffolds and frameworks, thus providing a comprehensive and flexible tool for drug design applications.

6.
Commun Biol ; 6(1): 1065, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857704

RESUMO

TRPM8 is a non-selective cation channel permeable to both monovalent and divalent cations that is activated by multiple factors, such as temperature, voltage, pressure, and changes in osmolality. It is a therapeutic target for anticancer drug development, and its modulators can be utilized for several pathological conditions. Here, we present a cryo-electron microscopy structure of a human TRPM8 channel in the closed state that was solved at 2.7 Å resolution. Our structure comprises the most complete model of the N-terminal pre-melastatin homology region. We also visualized several lipids that are bound by the protein and modeled how the human channel interacts with icilin. Analyses of pore helices in available TRPM structures showed that all these structures can be grouped into different closed, desensitized and open state conformations based on the register of the pore helix S6 which positions particular amino acid residues at the channel constriction.


Assuntos
Canais de Cátion TRPM , Humanos , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Temperatura , Canais de Cátion TRPM/metabolismo
7.
Expert Opin Drug Discov ; 18(8): 821-833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424369

RESUMO

INTRODUCTION: Collaborative computing has attracted great interest in the possibility of joining the efforts of researchers worldwide. Its relevance has further increased during the pandemic crisis since it allows for the strengthening of scientific collaborations while avoiding physical interactions. Thus, the E4C consortium presents the MEDIATE initiative which invited researchers to contribute via their virtual screening simulations that will be combined with AI-based consensus approaches to provide robust and method-independent predictions. The best compounds will be tested, and the biological results will be shared with the scientific community. AREAS COVERED: In this paper, the MEDIATE initiative is described. This shares compounds' libraries and protein structures prepared to perform standardized virtual screenings. Preliminary analyses are also reported which provide encouraging results emphasizing the MEDIATE initiative's capacity to identify active compounds. EXPERT OPINION: Structure-based virtual screening is well-suited for collaborative projects provided that the participating researchers work on the same input file. Until now, such a strategy was rarely pursued and most initiatives in the field were organized as challenges. The MEDIATE platform is focused on SARS-CoV-2 targets but can be seen as a prototype which can be utilized to perform collaborative virtual screening campaigns in any therapeutic field by sharing the appropriate input files.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Proteínas , Antivirais
8.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446241

RESUMO

The prediction of drug metabolism is attracting great interest for the possibility of discarding molecules with unfavorable ADME/Tox profile at the early stage of the drug discovery process. In this context, artificial intelligence methods can generate highly performing predictive models if they are trained by accurate metabolic data. MetaQSAR-based datasets were collected to predict the sites of metabolism for most metabolic reactions. The models were based on a set of structural, physicochemical, and stereo-electronic descriptors and were generated by the random forest algorithm. For each considered biotransformation, two types of models were developed: the first type involved all non-reactive atoms and included atom types among the descriptors, while the second type involved only non-reactive centers having the same atom type(s) of the reactive atoms. All the models of the first type revealed very high performances; the models of the second type show on average worst performances while being almost always able to recognize the reactive centers; only conjugations with glucuronic acid are unsatisfactorily predicted by the models of the second type. Feature evaluation confirms the major role of lipophilicity, self-polarizability, and H-bonding for almost all considered reactions. The obtained results emphasize the possibility of recognizing the sites of metabolism by classification models trained on MetaQSAR database. The two types of models can be synergistically combined since the first models identify which atoms can undergo a given metabolic reactions, while the second models detect the truly reactive centers. The generated models are available as scripts for the VEGA program.


Assuntos
Inteligência Artificial , Bases de Dados Factuais , Fenômenos Químicos , Biotransformação
9.
J Cheminform ; 15(1): 60, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296454

RESUMO

Off-target drug interactions are a major reason for candidate failure in the drug discovery process. Anticipating potential drug's adverse effects in the early stages is necessary to minimize health risks to patients, animal testing, and economical costs. With the constantly increasing size of virtual screening libraries, AI-driven methods can be exploited as first-tier screening tools to provide liability estimation for drug candidates. In this work we present ProfhEX, an AI-driven suite of 46 OECD-compliant machine learning models that can profile small molecules on 7 relevant liability groups: cardiovascular, central nervous system, gastrointestinal, endocrine, renal, pulmonary and immune system toxicities. Experimental affinity data was collected from public and commercial data sources. The entire chemical space comprised 289'202 activity data for a total of 210'116 unique compounds, spanning over 46 targets with dataset sizes ranging from 819 to 18896. Gradient boosting and random forest algorithms were initially employed and ensembled for the selection of a champion model. Models were validated according to the OECD principles, including robust internal (cross validation, bootstrap, y-scrambling) and external validation. Champion models achieved an average Pearson correlation coefficient of 0.84 (SD of 0.05), an R2 determination coefficient of 0.68 (SD = 0.1) and a root mean squared error of 0.69 (SD of 0.08). All liability groups showed good hit-detection power with an average enrichment factor at 5% of 13.1 (SD of 4.5) and AUC of 0.92 (SD of 0.05). Benchmarking against already existing tools demonstrated the predictive power of ProfhEX models for large-scale liability profiling. This platform will be further expanded with the inclusion of new targets and through complementary modelling approaches, such as structure and pharmacophore-based models. ProfhEX is freely accessible at the following address: https://profhex.exscalate.eu/ .

11.
Viruses ; 15(5)2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243214

RESUMO

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/metabolismo , Reposicionamento de Medicamentos/métodos
12.
Front Pharmacol ; 14: 1148670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033661

RESUMO

Drug-induced cardiotoxicity represents one of the most critical safety concerns in the early stages of drug development. The blockade of the human ether-à-go-go-related potassium channel (hERG) is the most frequent cause of cardiotoxicity, as it is associated to long QT syndrome which can lead to fatal arrhythmias. Therefore, assessing hERG liability of new drugs candidates is crucial to avoid undesired cardiotoxic effects. In this scenario, computational approaches have emerged as useful tools for the development of predictive models able to identify potential hERG blockers. In the last years, several efforts have been addressed to generate ligand-based (LB) models due to the lack of experimental structural information about hERG channel. However, these methods rely on the structural features of the molecules used to generate the model and often fail in correctly predicting new chemical scaffolds. Recently, the 3D structure of hERG channel has been experimentally solved enabling the use of structure-based (SB) strategies which may overcome the limitations of the LB approaches. In this study, we compared the performances achieved by both LB and SB classifiers for hERG-related cardiotoxicity developed by using Random Forest algorithm and employing a training set containing 12789 hERG binders. The SB models were trained on a set of scoring functions computed by docking and rescoring calculations, while the LB classifiers were built on a set of physicochemical descriptors and fingerprints. Furthermore, models combining the LB and SB features were developed as well. All the generated models were internally validated by ten-fold cross-validation on the TS and further verified on an external test set. The former revealed that the best performance was achieved by the LB model, while the model combining the LB and the SB attributes displayed the best results when applied on the external test set highlighting the usefulness of the integration of LB and SB features in correctly predicting unseen molecules. Overall, our predictive models showed satisfactory performances providing new useful tools to filter out potential cardiotoxic drug candidates in the early phase of drug discovery.

13.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203621

RESUMO

Phenotypic screenings are usually combined with deconvolution techniques to characterize the mechanism of action for the retrieved hits. These studies can be supported by various computational analyses, although docking simulations are rarely employed. The present study aims to assess if multiple docking calculations can prove successful in target prediction. In detail, the docking simulations submitted to the MEDIATE initiative are utilized to predict the viral targets involved in the hits retrieved by a recently published cytopathic screening. Multiple docking results are combined by the EFO approach to develop target-specific consensus models. The combination of multiple docking simulations enhances the performances of the developed consensus models (average increases in EF1% value of 40% and 25% when combining three and two docking runs, respectively). These models are able to propose reliable targets for about half of the retrieved hits (31 out of 59). Thus, the study emphasizes that docking simulations might be effective in target identification and provide a convincing validation for the collaborative strategies that inspire the MEDIATE initiative. Disappointingly, cross-target and cross-program correlations suggest that common scoring functions are not specific enough for the simulated target.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Consenso
14.
Sci Adv ; 8(48): eadd4150, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449624

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein binds angiotensin-converting enzyme 2 as its primary infection mechanism. Interactions between S and endogenous proteins occur after infection but are not well understood. We profiled binding of S against >9000 human proteins and found an interaction between S and human estrogen receptor α (ERα). Using bioinformatics, supercomputing, and experimental assays, we identified a highly conserved and functional nuclear receptor coregulator (NRC) LXD-like motif on the S2 subunit. In cultured cells, S DNA transfection increased ERα cytoplasmic accumulation, and S treatment induced ER-dependent biological effects. Non-invasive imaging in SARS-CoV-2-infected hamsters localized lung pathology with increased ERα lung levels. Postmortem lung experiments from infected hamsters and humans confirmed an increase in cytoplasmic ERα and its colocalization with S in alveolar macrophages. These findings describe the discovery of a S-ERα interaction, imply a role for S as an NRC, and advance knowledge of SARS-CoV-2 biology and coronavirus disease 2019 pathology.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Cricetinae , Humanos , Receptores de Estrogênio , Receptor alfa de Estrogênio , SARS-CoV-2
15.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361870

RESUMO

A large number of SARS-CoV-2 mutations in a short period of time has driven scientific research related to vaccines, new drugs, and antibodies to combat the new variants of the virus. Herein, we present a web portal containing the structural information, the tridimensional coordinates, and the molecular dynamics trajectories of the SARS-CoV-2 spike protein and its main variants. The Spike Mutants website can serve as a rapid online tool for investigating the impact of novel mutations on virus fitness. Taking into account the high variability of SARS-CoV-2, this application can help the scientific community when prioritizing molecules for experimental assays, thus, accelerating the identification of promising drug candidates for COVID-19 treatment. Below we describe the main features of the platform and illustrate the possible applications for speeding up the drug discovery process and hypothesize new effective strategies to overcome the recurrent mutations in SARS-CoV-2 genome.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Mutação , Tratamento Farmacológico da COVID-19
16.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232873

RESUMO

This Special Issue was intended as a dissemination forum where the major results pursued by the EXSCALATE4CoV project (E4C, https://www [...].


Assuntos
Metodologias Computacionais , Pandemias , Pandemias/prevenção & controle , Software
17.
Cells ; 11(18)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139382

RESUMO

The Nerve Growth Factor (NGF) belongs to the neurothrophins protein family involved in the survival of neurons in the nervous system. The interaction of NGF with its high-affinity receptor TrkA mediates different cellular pathways related to Alzheimer's disease, pain, ocular dysfunction, and cancer. Therefore, targeting NGF-TrkA interaction represents a valuable strategy for the development of new therapeutic agents. In recent years, experimental studies have revealed that peptides belonging to the N-terminal domain of NGF are able to partly mimic the biological activity of the whole protein paving the way towards the development of small peptides that can selectively target specific signaling pathways. Hence, understanding the molecular basis of the interaction between the N-terminal segment of NGF and TrkA is fundamental for the rational design of new peptides mimicking the NGF N-terminal domain. In this study, molecular dynamics simulation, binding free energy calculations and per-residue energy decomposition analysis were combined in order to explore the molecular recognition pattern between the experimentally active NGF(1-14) peptide and TrkA. The results highlighted the importance of His4, Arg9 and Glu11 as crucial residues for the stabilization of NGF(1-14)-TrkA interaction, thus suggesting useful insights for the structure-based design of new therapeutic peptides able to modulate NGF-TrkA interaction.


Assuntos
Fator de Crescimento Neural , Receptor trkA , Simulação de Dinâmica Molecular , Fator de Crescimento Neural/metabolismo , Peptídeos , Receptor trkA/metabolismo , Transdução de Sinais
18.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955815

RESUMO

The vast amount of epidemiologic and genomic data that were gathered as a global response to the COVID-19 pandemic that was caused by SARS-CoV-2 offer a unique opportunity to shed light on the structural evolution of coronaviruses and in particular on the spike (S) glycoprotein, which mediates virus entry into the host cell by binding to the human ACE2 receptor. Herein, we carry out an investigation into the dynamic properties of the S glycoprotein, focusing on the much more transmissible Delta and Omicron variants. Notwithstanding the great number of mutations that have accumulated, particularly in the Omicron S glycoprotein, our data clearly showed the conservation of some structural and dynamic elements, such as the global motion of the receptor binding domain (RBD). However, our studies also revealed structural and dynamic alterations that were concentrated in the aa 627-635 region, on a small region of the receptor binding motif (aa 483-485), and the so-called "fusion-peptide proximal region". In particular, these last two S regions are known to be involved in the human receptor ACE2 recognition and membrane fusion. Our structural evidence, therefore, is likely involved in the observed different transmissibility of these S mutants. Finally, we highlighted the role of glycans in the increased RBD flexibility of the monomer in the up conformation of Omicron.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Glicoproteínas , Humanos , Mutação , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886905

RESUMO

(1) Background: Virtual screening campaigns require target structures in which the pockets are properly arranged for binding. Without these, MD simulations can be used to relax the available target structures, optimizing the fine architecture of their binding sites. Among the generated frames, the best structures can be selected based on available experimental data. Without experimental templates, the MD trajectories can be filtered by energy-based criteria or sampled by systematic analyses. (2) Methods: A blind and methodical analysis was performed on the already reported MD run of the hTRPM8 tetrameric structures; a total of 50 frames underwent docking simulations by using a set of 1000 ligands including 20 known hTRPM8 modulators. Docking runs were performed by LiGen program and involved the frames as they are and after optimization by SCRWL4.0. For each frame, all four monomers were considered. Predictive models were developed by the EFO algorithm based on the sole primary LiGen scores. (3) Results: On average, the MD simulation progressively enhances the performance of the extracted frames, and the optimized structures perform better than the non-optimized frames (EF1% mean: 21.38 vs. 23.29). There is an overall correlation between performances and volumes of the explored pockets and the combination of the best performing frames allows to develop highly performing consensus models (EF1% = 49.83). (4) Conclusions: The systematic sampling of the entire MD run provides performances roughly comparable with those previously reached by using rationally selected frames. The proposed strategy appears to be helpful when the lack of experimental data does not allow an easy selection of the optimal structures for docking simulations. Overall, the reported docking results confirm the relevance of simulating all the monomers of an oligomer structure and emphasize the efficacy of the SCRWL4.0 method to optimize the protein structures for docking calculations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Sítios de Ligação , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
20.
Sci Data ; 9(1): 405, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831315

RESUMO

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA