Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nutr Neurosci ; 27(3): 252-261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36800228

RESUMO

Computer-based analysis of motility was used as a measure of amyloid-ß (Aß) proteotoxicity in the transgenic strain GMC101, expressing human Aß1-42 in body wall muscle cells. Aß-aggregation was quantified to relate the effects of caprylic acid (CA) to the amount of the proteotoxic protein. Gene knockdowns were induced through RNA-interference (RNAi). Moreover, the estimation of adenosine triphosphate (ATP) levels, the mitochondrial membrane potential (MMP) and oxygen consumption served the evaluation of mitochondrial function. CA improved the motility of GMC101 nematodes and reduced Aß aggregation. Whereas RNAi for orthologues encoding key enzymes for α-lipoic acid and ketone bodies synthesis did not affect motility stimulation by CA, knockdown of orthologues involved in ß-oxidation of fatty acids diminished its effects. The efficient energy gain by application of CA was finally proven by the increase of ATP levels in association with increased oxygen consumption and MMP. In conclusion, CA attenuates Aß proteotoxicity by supplying energy via FAO. Since especially glucose oxidation is disturbed in Alzheimer´s disease, CA could potentially serve as an alternative energy fuel.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/metabolismo , Doença de Alzheimer/metabolismo , Caprilatos/metabolismo , Caprilatos/farmacologia , Proteínas de Caenorhabditis elegans/genética , Peptídeos beta-Amiloides/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Animais de Doenças
2.
Biochem Biophys Res Commun ; 673: 16-22, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37354655

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia. The pathogenesis is a complex process, in which the proteotoxicity of amyloid-ß (Aß) was identified as a major factor. 4-Phenylbutyric acid (4-PBA) is an aromatic short-chain fatty acid that may attenuate Aß proteotoxicity through its already shown properties as a chemical chaperone or by inhibition of histone deacetylases (HDACs). In the present study, we investigated the molecular effects of 4-PBA on Aß proteotoxicity using the nematode Caenorhabditis elegans as a model. Computer-based analysis of motility was used as a measure of Aß proteotoxicity in the transgenic strain GMC101, expressing human Aß1-42 in body wall muscle cells. Aß aggregation was quantified using the fluorescent probe NIAD-4 to correlate the effects of 4-PBA on motility with the amount of the proteotoxic protein. Furthermore, these approaches were supplemented by gene regulation via RNA interference (RNAi) to identify molecular targets of 4-PBA. 4-PBA improved the motility of GMC101 nematodes and reduced Aß aggregation significantly. Knockdown of hsf-1, encoding an ortholog essential for the cytosolic heat shock response, prevented the increase in motility and decrease in Aß aggregation by 4-PBA incubation. RNAi for hda-1, encoding an ortholog of histone deacetylase 2, also increased motility. Double RNAi for hsf-1 and hda-1 revealed a dominant effect of hsf-1 RNAi. Moreover, 4-PBA failed to further increase motility under hda-1 RNAi. Accordingly, the results suggest that 4-PBA attenuates Aß proteotoxicity in an AD-model of C. elegans through activation of HSF-1 via inhibition of HDA-1.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Humanos , Doença de Alzheimer/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Modelos Animais de Doenças
3.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119375, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208773

RESUMO

The nematode Caenorhabditis elegans is a widely used research model for the investigation of metabolism, aging and age-associated diseases. However, when investigating the impact of natural compounds or drugs on those topics, a major confounder is the metabolism of these test substances by live E. coli bacteria, the standard food source of C. elegans. Using paraformaldehyde instead of heat to inactivate E. coli, which allows for high-throughput technologies and better food availability, it is shown here that RNA-interference works equally well, thus demonstrating the absence of considerable interfering modifications of paraformaldehyde with nucleic acids.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/metabolismo , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA