Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(7)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37890472

RESUMO

Metal deposition with cryogenic cooling is a common technique in the condensed matter community for producing ultra-thin epitaxial superconducting layers on semiconductors. However, a significant challenge arises when these films return to room temperature, as they tend to undergo dewetting. This issue can be mitigated by capping the films with an amorphous layer. In this study, we investigate the influence of differentin situfabricated caps on the structural characteristics of Sn thin films deposited at 80 K on InSb substrates. Regardless of the type of capping, we consistently observe that the films remain smooth upon returning to room temperature and exhibit epitaxy on InSb in the cubic Sn (α-Sn) phase. Notably, we identify a correlation between alumina capping using an electron beam evaporator and an increased presence of tetragonal Sn (ß-Sn) grains. This suggests that heating from the alumina source may induce a partial phase transition in the Sn layer. The existence of theß-Sn phase induces superconducting behavior of the films by percolation effect. This study highlights the potential for tailoring the structural properties of cryogenic Sn thin films throughin situcapping. This development opens avenues for precise control in the production of superconducting Sn films, facilitating their integration into quantum computing platforms.

2.
Phys Rev E ; 108(2): L022101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723678

RESUMO

The not operation is a reversible transformation acting on a 1-bit logical state and should be achievable in a physically reversible manner at no energetic cost. We experimentally demonstrate a bit-flip protocol based on the momentum of an underdamped oscillator confined in a double-well potential. The protocol is designed to be reversible in the ideal dissipationless case, and the thermodynamic work required is inversely proportional to the quality factor of the system. Our implementation demonstrates an energy dissipation significantly lower than the minimal cost of information processing in logically irreversible operations. It is, moreover, performed at high speed: A fully equilibrated final state is reached in only half a period of the oscillator. The results are supported by an analytical model that takes into account the presence of irreversibility. This Research Letter concludes with a discussion of optimization strategies.

3.
Proc Natl Acad Sci U S A ; 120(39): e2301742120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37729204

RESUMO

Landauer's principle makes a strong connection between information theory and thermodynamics by stating that erasing a one-bit memory at temperature [Formula: see text] requires an average energy larger than [Formula: see text], with [Formula: see text] Boltzmann's constant. This tiny limit has been saturated in model experiments using quasistatic processes. For faster operations, an overhead proportional to the processing speed and to the memory damping appears. In this article, we show that underdamped systems are a winning strategy to reduce this extra energetic cost. We prove both experimentally and theoretically that, in the limit of vanishing dissipation mechanisms in the memory, the physical system is thermally insulated from its environment during fast erasures, i.e., fast protocols are adiabatic as no heat is exchanged with the bath. Using a fast optimal erasure protocol, we also show that these adiabatic processes produce a maximum adiabatic temperature [Formula: see text], and that Landauer's bound for fast erasures in underdamped systems becomes the adiabatic bound: [Formula: see text].

4.
Phys Rev E ; 107(3-1): 034118, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073051

RESUMO

For systems in equilibrium at a temperature T, thermal noise and energy damping are related to T through the fluctuation-dissipation theorem (FDT). We study here an extension of the FDT to an out-of-equilibrium steady state: a microcantilever subject to a constant heat flux. The resulting thermal profile in this spatially extended system interplays with the local energy dissipation field to prescribe the amplitude of mechanical fluctuations. Using three samples with different damping profiles (localized or distributed), we probe this approach and experimentally demonstrate the link between fluctuations and dissipation. The thermal noise can therefore be predicted a priori from the measurement of the dissipation as a function of the maximum temperature of the micro-oscillator.

5.
Phys Rev Lett ; 128(7): 070604, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244423

RESUMO

Using a double-well potential as a physical memory, we study with experiments and numerical simulations the energy exchanges during erasure processes, and model quantitatively the cost of fast operation. Within the stochastic thermodynamics framework we find the origins of the overhead to Landauer's bound required for fast operations: in the overdamped regime this term mainly comes from the dissipation, while in the underdamped regime it stems from the heating of the memory. Indeed, the system is thermalized with its environment at all times during quasistatic protocols, but for fast ones, the inefficient heat transfer to the thermostat is delayed with respect to the work influx, resulting in a transient temperature rise. The warming, quantitatively described by a comprehensive statistical physics description of the erasure process, is noticeable on both the kinetic and potential energy: they no longer comply with equipartition. The mean work and heat to erase the information therefore increase accordingly. They are both bounded by an effective Landauer's limit k_{B}T_{eff}ln2, where T_{eff} is a weighted average of the actual temperature of the memory during the process.

6.
Phys Rev E ; 103(6-1): 062125, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271763

RESUMO

The Fluctuation-Dissipation Theorem (FDT) is a powerful tool to estimate the thermal noise of physical systems in equilibrium. In general, however, thermal equilibrium is an approximation or cannot be assumed at all. A more general formulation of the FDT is then needed to describe the behavior of the fluctuations. In our experiment we study a microcantilever brought out of equilibrium by a strong heat flux generated by the absorption of the light of a laser. While the base is kept at cryogenic temperatures, the tip is heated up to the melting point, thus creating the highest temperature difference the system can sustain. We independently estimate the temperature profile of the cantilever and its mechanical fluctuations as well as its dissipation. We then demonstrate how the thermal fluctuations of all the observed degrees of freedom, though increasing with the heat flux, are much lower than what is expected from the average temperature of the system. We interpret these results using a minimal extension of the FDT: this dearth of thermal noise arises from a dissipation shared between clamping losses and distributed damping.

7.
Phys Rev Lett ; 126(17): 170601, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988419

RESUMO

The Landauer principle states that at least k_{B}Tln2 of energy is required to erase a 1-bit memory, with k_{B}T the thermal energy of the system. We study the effects of inertia on this bound using as one-bit memory an underdamped micromechanical oscillator confined in a double-well potential created by a feedback loop. The potential barrier is precisely tunable in the few k_{B}T range. We measure, within the stochastic thermodynamic framework, the work and the heat of the erasure protocol. We demonstrate experimentally and theoretically that, in this underdamped system, the Landauer bound is reached with a 1% uncertainty, with protocols as short as 100 ms.

8.
J Mol Recognit ; 34(1): e2879, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098182

RESUMO

Atomic force microscopy (AFM) is a powerful tool to investigate interaction forces at the micro and nanoscale. Cantilever stiffness, dimensions and geometry of the tip can be chosen according to the requirements of the specific application, in terms of spatial resolution and force sensitivity. Colloidal probes (CPs), obtained by attaching a spherical particle to a tipless (TL) cantilever, offer several advantages for accurate force measurements: tunable and well-characterisable radius; higher averaging capabilities (at the expense of spatial resolution) and sensitivity to weak interactions; a well-defined interaction geometry (sphere on flat), which allows accurate and reliable data fitting by means of analytical models. The dynamics of standard AFM probes has been widely investigated, and protocols have been developed for the calibration of the cantilever spring constant. Nevertheless, the dynamics of CPs, and in particular of large CPs, with radius well above 10 µm and mass comparable, or larger, than the cantilever mass, is at present still poorly characterized. Here we describe the fabrication and calibration of (large) CPs. We describe and discuss the peculiar dynamical behaviour of CPs, and present an alternative protocol for the accurate calibration of the spring constant.


Assuntos
Coloides/análise , Microscopia de Força Atômica/métodos , Calibragem
9.
PLoS One ; 12(12): e0189979, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267316

RESUMO

The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein's structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever's fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses.


Assuntos
Dobramento de Proteína , Modelos Teóricos , Reologia , Soroalbumina Bovina/química , Temperatura , Viscosidade
10.
Phys Rev E ; 95(3-1): 032138, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415294

RESUMO

We study the mechanical fluctuations of a micrometer sized silicon cantilever subjected to a strong heat flow, thus having a highly nonuniform local temperature. In this nonequilibrium steady state, we show that fluctuations are equivalent to the thermal noise of a cantilever at equilibrium around room temperature, while its mean local temperature is several hundred degrees higher. Changing the mechanical dissipation by adding a coating to the cantilever, we recover the expected rise of fluctuations with the mean temperature. Our work demonstrates that inhomogeneous dissipation mechanisms can decouple the amplitude of thermal fluctuations from the average temperature. This property could be useful to understand out-of-equilibrium fluctuating systems, or to engineer low noise instruments.

11.
Sensors (Basel) ; 15(11): 27905-16, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540061

RESUMO

An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0:03mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.


Assuntos
Interferometria/métodos , Processamento de Sinais Assistido por Computador , Viscosidade , Glicerol/química , Temperatura
12.
Rev Sci Instrum ; 86(4): 044702, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933875

RESUMO

We present an innovative technique which allows the simultaneous measurement of the dielectric constant of a material at many frequencies, spanning a four orders of magnitude range chosen between 10(-2) Hz and 10(4) Hz. The sensitivity and accuracy are comparable to those obtained using standard single frequency techniques. The technique is based on three new and simple features: (a) the precise real time correction of the amplification of a current amplifier, (b) the specific shape of the excitation signal and its frequency spectrum, and (c) the precise synchronization between the generation of the excitation signal and the acquisition of the dielectric response signal. This technique is useful in the case of relatively fast dynamical measurements when the knowledge of the time evolution of the dielectric constant is needed.

13.
Rev Sci Instrum ; 84(9): 095001, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24089852

RESUMO

In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10(-15) m/√Hz), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few µm.

14.
Nanotechnology ; 24(22): 225504, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23644764

RESUMO

The functionalization of an atomic force microscope (AFM) cantilever with a colloidal bead is a widely used technique when the geometry between the probe and the sample must be controlled, particularly in force spectroscopy. But some questions remain: how does a bead glued at the end of a cantilever influence its mechanical response? And more importantly for quantitative measurements, can we still determine the stiffness of the AFM probe with traditional techniques?In this paper, the influence of the colloidal mass loading on the eigenmode shape and resonant frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with and without beads attached at their extremities. The experiments are performed with a home-made ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer probes the cantilever at different positions and the spatial shapes of the modes are determined up to the fifth resonance, without external excitation. The results clearly demonstrate that the first eigenmode is almost unchanged by mass loading. However the oscillation behavior of higher resonances presents a marked difference: with a particle glued at its extremity, the nodes of the modes are displaced towards the free end of the cantilever. These results are compared to an analytical model taking into account the mass and inertial moment of the load in an Euler-Bernoulli framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a quantitative prediction of the thermal noise amplitude of each mode. A good agreement between the experimental results and the analytical model is demonstrated, allowing a clean calibration of the probe stiffness.


Assuntos
Microscopia de Força Atômica/instrumentação , Algoritmos , Calibragem , Desenho de Equipamento , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA