RESUMO
We present an innovative in vitro model aimed at investigating the combined effects of tissue rigidity and shear stress on endothelial cell (EC) function, which are crucial for understanding vascular health and the onset of diseases such as atherosclerosis. Traditionally, studies have explored the impacts of shear stress and substrate stiffness on ECs, independently. However, this integrated system combines these factors to provide a more precise simulation of the mechanical environment of the vasculature. The objective is to examine EC mechanotransduction across various tissue stiffness levels and flow conditions using human ECs. We detail the protocol for synthesizing gelatin methacrylate (GelMA) hydrogels with tunable stiffness and seeding them with ECs to achieve confluency. Additionally, we describe the design and assembly of a cost-effective flow chamber, supplemented by computational fluid dynamics simulations, to generate physiological flow conditions characterized by laminar flow and appropriate shear stress levels. The protocol also incorporates fluorescence labeling for confocal microscopy, enabling the assessment of EC responses to both tissue compliance and flow conditions. By subjecting cultured ECs to multiple integrated mechanical stimuli, this model enables comprehensive investigations into how factors such as hypertension and aging may affect EC function and EC-mediated vascular diseases. The insights gained from these investigations will be instrumental in elucidating the mechanisms underlying vascular diseases and in developing effective treatment strategies.
Assuntos
Células Endoteliais , Hidrogéis , Humanos , Hidrogéis/química , Células Endoteliais/citologia , Gelatina/química , Células Endoteliais da Veia Umbilical Humana , Mecanotransdução Celular/fisiologia , Metacrilatos/química , Estresse Mecânico , Microscopia Confocal/métodos , HidrodinâmicaRESUMO
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Assuntos
Materiais Biocompatíveis , Polissacarídeos , Engenharia Tecidual , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Polissacarídeos/química , Humanos , Teste de Materiais , Medicina Regenerativa , Tamanho da Partícula , Sistemas de Liberação de Medicamentos , AnimaisRESUMO
In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.
Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células , Oxigênio , Humanos , Oxigênio/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Técnicas de Cultura de Células/métodos , Feminino , Hipóxia Celular/fisiologia , Consumo de OxigênioRESUMO
Cell culture, the process of growing cells in conditions that mimic those in the body, is a key technique in biomedical research. Oxygen is not controlled in conventional cell culture, although chambers that control oxygen in the surrounding gas phase are commercially available. In both cases, it is valuable to understand the pericellular oxygen tension (i.e., the oxygen concentration that cells experience) in cultures. Herein we describe a procedure for using commercial optical sensor spots to measure pericellular oxygen for adherent and suspension cultures. Spots are placed on surfaces on which cells are grown, and optical cables are attached to the outside of the cell culture vessels and connected to a computer. Associated software allows for the real-time monitoring of pericellular oxygen during cell culture experiments. This procedure enhances the reproducibility and control of cell culture.
Assuntos
Pesquisa Biomédica , Técnicas de Cultura de Células , Reprodutibilidade dos Testes , Gasometria , OxigênioRESUMO
Recent advances in our understanding of hypoxia and hypoxia-mediated mechanisms shed light on the critical implications of the hypoxic stress on cellular behavior. However, tools emulating hypoxic conditions (i.e., low oxygen tensions) for research are limited and often suffer from major shortcomings, such as lack of reliability and off-target effects, and they usually fail to recapitulate the complexity of the tissue microenvironment. Fortunately, the field of biomaterials is constantly evolving and has a central role to play in the development of new technologies for conducting hypoxia-related research in several aspects of biomedical research, including tissue engineering, cancer modeling, and modern drug screening. In this perspective, we provide an overview of several strategies that have been investigated in the design and implementation of biomaterials for simulating or inducing hypoxic conditions-a prerequisite in the stabilization of hypoxia-inducible factor (HIF), a master regulator of the cellular responses to low oxygen. To this end, we discuss various advanced biomaterials, from those that integrate hypoxia-mimetic agents to artificially induce hypoxia-like responses, to those that deplete oxygen and consequently create either transient (<1 day) or sustained (>1 day) hypoxic conditions. We also aim to highlight the advantages and limitations of these emerging biomaterials for biomedical applications, with an emphasis on cancer research.
RESUMO
Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 µg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 µg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.
RESUMO
Oxygen (O2) tension plays a key role in tissue function and pathophysiology. O2-controlled cell culture, in which the O2 concentration in an incubator's gas phase is controlled, is an indispensable tool to study the role of O2 in vivo. For this technique, it is presumed that the incubator setpoint is equal to the O2 tension that cells experience (i.e., pericellular O2). We discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0.0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to anoxic exposure followed by rapid reoxygenation. To better understand the relationship between incubator gas phase and pericellular O2 tensions, we developed a reaction-diffusion model that predicts pericellular O2 tension a priori. This model revealed that the effect of cellular O2 consumption is greatest in smaller volume culture vessels (e.g., 96-well plate). By controlling pericellular O2 tension in cell culture, we discovered that MCF7 cells have stronger glycolytic and glutamine metabolism responses in anoxia vs. hypoxia. MCF7 also expressed higher levels of HIF2A, CD73, NDUFA4L2, etc. and lower levels of HIF1A, CA9, VEGFA, etc. in response to hypoxia vs. anoxia. Proteomics revealed that 4T1 cells had an upregulated epithelial-to-mesenchymal transition (EMT) response and downregulated reactive oxygen species (ROS) management, glycolysis, and fatty acid metabolism pathways in hypoxia vs. anoxia. Collectively, these results reveal that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable to model hypoxia. We demonstrate that controlling atmospheric O2 tension in cell culture incubators is insufficient to control O2 in cell culture and introduce the concept of pericellular O2-controlled cell culture.
RESUMO
Hypoxia is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O2) control, leading to non-pathophysiological tumor responses. Therefore, it is essential to develop better cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O2 locally and induce long-standing hypoxia. HICs promoted changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in the plasmacytoid DC (pDC) subset and an impaired conventional DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and has great potential to deepen our understanding of cancer-immune cell relationship in low O2 conditions and may pave the way for developing more effective therapies.
RESUMO
An effective treatment for hormone-dependent breast cancer is chemotherapy using cytotoxic agents such as letrozole (LTZ). However, most anticancer drugs, including LTZ, are classified as class IV biopharmaceuticals, which are associated with low water solubility, poor bioavailability, and significant toxicity. As a result, developing a targeted delivery system for LTZ is critical for overcoming these challenges and limitations. Here, biodegradable LTZ-loaded nanocarriers were synthesized by solvent emulsification evaporation using nanomicelles prepared with dodecanol-polylactic acid-co-polyethylene glycol (DPLA-co-PEG). Furthermore, cancer cell-targeting folic acid (FA) was conjugated into the nanomicelles to achieve a more effective and safer cancer treatment. During our investigation, DPLA-co-PEG and DPLA-co-PEG-FA displayed a uniform and spherical morphology. The average diameters of DPLA-co-PEG and DPLA-co-PEG-FA nanomicelles were 86.5 and 241.3 nm, respectively. Our preliminary data suggest that both nanoformulations were cytocompatible, with ≥90% cell viability across all concentrations tested. In addition, the amphiphilic nature of the nanomicelles led to high drug loading and dispersion in water, resulting in the extended release of LTZ for up to 50 h. According to the Higuchi model, nanomicelles functionalized with FA have a greater potential for the controlled delivery of LTZ into target cells. This model was confirmed experimentally, as LTZ-containing DPLA-co-PEG-FA was significantly and specifically more cytotoxic (up to 90% cell death) toward MCF-7 cells, a hormone-dependent human breast cancer cell line, when compared to free LTZ and LTZ-containing DPLA-co-PEG. Furthermore, a half-maximal inhibitory concentration (IC50) of 87 ± 1 nM was achieved when MCF-7 cells were exposed to LTZ-containing DPLA-co-PEG-FA, whereas higher doses of 125 ± 2 and 100 ± 2 nM were required for free LTZ and LTZ-containing DPLA-co-PEG, respectively. Collectively, DPLA-co-PEG-FA represents a promising nanosized drug delivery system to target controllably the delivery of drugs such as chemotherapeutics.
Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Letrozol/uso terapêutico , Portadores de Fármacos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Hormônios/uso terapêutico , Ácido Fólico , ÁguaRESUMO
The extracellular matrix (ECM), an integral component of all organs, is inherently tissue adhesive and plays a pivotal role in tissue regeneration and remodeling. However, man-made three-dimensional (3D) biomaterials that are designed to mimic ECMs do not intrinsically adhere to moisture-rich environments and often lack an open macroporous architecture required for facilitating cellularization and integration with the host tissue post-implantation. Furthermore, most of these constructs usually entail invasive surgeries and potentially a risk of infection. To address these challenges, we recently engineered biomimetic and macroporous cryogel scaffolds that are syringe injectable while exhibiting unique physical properties, including strong bioadhesive properties to tissues and organs. These biomimetic catechol-containing cryogels were prepared from naturally-derived polymers such as gelatin and hyaluronic acid and were functionalized with mussel-inspired dopamine (DOPA) to impart bioadhesive properties. We found that using glutathione as an antioxidant and incorporating DOPA into cryogels via a PEG spacer arm led to the highest tissue adhesion and improved physical properties overall, whereas DOPA-free cryogels were weakly tissue adhesive. As shown by qualitative and quantitative adhesion tests, DOPA-containing cryogels were able to adhere strongly to several animal tissues and organs such as the heart, small intestine, lung, kidney, and skin. Furthermore, these unoxidized (i.e., browning-free) and bioadhesive cryogels showed negligible cytotoxicity toward murine fibroblasts and prevented the ex vivo activation of primary bone marrow-derived dendritic cells. Finally, in vivo data suggested good tissue integration and a minimal host inflammatory response when subcutaneously injected in rats. Collectively, these minimally invasive, browning-free, and strongly bioadhesive mussel-inspired cryogels show great promise for various biomedical applications, potentially in wound healing, tissue engineering, and regenerative medicine.
RESUMO
Hypoxia, an important feature of solid tumors, is a major factor shaping the immune landscape, and several cancer models have been developed to emulate hypoxic tumors. However, to date, they still have several limitations, such as the lack of reproducibility, inadequate biophysical cues, limited immune cell infiltration, and poor oxygen (O 2 ) control, leading to non-pathophysiological tumor responses. As a result, it is essential to develop new and improved cancer models that mimic key features of the tumor extracellular matrix and recreate tumor-associated hypoxia while allowing cell infiltration and cancer-immune cell interactions. Herein, hypoxia-inducing cryogels (HICs) have been engineered using hyaluronic acid (HA) as macroporous scaffolds to fabricate three-dimensional microtissues and model a hypoxic tumor microenvironment. Specifically, tumor cell-laden HICs have been designed to deplete O 2 locally and induce long-standing hypoxia. This state of low oxygen tension, leading to HIF-1α stabilization in tumor cells, resulted in changes in hypoxia-responsive gene expression and phenotype, a metabolic adaptation to anaerobic glycolysis, and chemotherapy resistance. Additionally, HIC-supported tumor models induced dendritic cell (DC) inhibition, revealing a phenotypic change in plasmacytoid B220 + DC (pDC) subset and an impaired conventional B220 - DC (cDC) response in hypoxia. Lastly, our HIC-based melanoma model induced CD8+ T cell inhibition, a condition associated with the downregulation of pro-inflammatory cytokine secretion, increased expression of immunomodulatory factors, and decreased degranulation and cytotoxic capacity of T cells. Overall, these data suggest that HICs can be used as a tool to model solid-like tumor microenvironments and identify a phenotypic transition from cDC to pDC in hypoxia and the key contribution of HA in retaining cDC phenotype and inducing their hypoxia-mediated immunosuppression. This technology has great potential to deepen our understanding of the complex relationships between cancer and immune cells in low O 2 conditions and may pave the way for developing more effective therapies.
RESUMO
Endothelium health is essential to the regulation of physiological vascular functions. Because of the critical capability of endothelial cells (ECs) to sense and transduce chemical and mechanical signals in the local vascular environment, their dysfunction is associated with a vast variety of vascular diseases and injuries, especially atherosclerosis and subsequent cardiovascular diseases. This review describes the mechanotransduction events that are mediated through ECs, the EC subcellular components involved, and the pathways reported to be potentially involved. Up-to-date research efforts involving in vivo animal models and in vitro biomimetic models are also discussed, including their advantages and drawbacks, with recommendations on future modeling approaches to aid the development of novel therapies targeting atherosclerosis and related cardiovascular diseases.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Células Endoteliais/metabolismo , Mecanotransdução Celular/fisiologia , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Aterosclerose/metabolismo , Estresse MecânicoRESUMO
Metal-organic frameworks (MOFs) are a novel class of crystalline porous materials, consisting of metal ions and organic linkers. These hybrid materials possess exceptional porosity and specific surface area, which have recently garnered significant interest due to their potential applications in gas separation and storage, energy storage, biomedical imaging, and drug delivery. As MOFs are being explored for biomedical applications, it is essential to comprehensively assess their toxicity. Although nearly ninety thousand MOFs have been investigated, evaluating and optimizing their physico-chemical properties in relevant biological systems remain critical for their clinical translation. In this review article, we first provide a brief classification of MOFs based on their chemical structures. We then conduct a comprehensive evaluation of in vitro and in vivo studies that assess the biocompatibility of MOFs. Additionally, we discuss various approaches to mitigate the critical factors associated with MOF toxicity. To this end, the effects of chemistry, particle size, morphology, and particle aggregation are examined. To better understand MOFs' potential toxicity to living organisms, we also delve into the toxicity mechanisms of nanoparticles (NPs). Furthermore, we introduce and evaluate strategies such as surface modification to reduce the inherent toxicity of MOFs. Finally, we discuss current challenges, the path to clinical trials, and new research directions.
RESUMO
Biomaterials undergo a transformative journey, from their origin as renewable resources to the manufacturing plants where they are processed and stored, until they fulfill their intended therapeutic or diagnostic purposes and become medical waste. However, during this life cycle, biomaterials can be susceptible to contamination and subsequent degradation through various mechanisms such as hydro-mechanical, thermal, or biochemical processes in water, soil, or air. These factors raise significant concerns regarding biological safety. Additional complexities arise from the potential amalgamation of biomaterials with other materials, either of the same kind or different types. Use of biomaterials influences their porosity, surface chemistry, and structural strength, and these factors affect biomaterials' reusability. Given the multitude of materials, processing parameters, sustainability requirements, and the limitation of natural resources, the recycling of biomaterials becomes necessary. Unfortunately, this topic has received limited attention thus far. In this context, this perspective provides a brief overview, analysis, and classification of reports on biomaterials recycling, aiming to initiate a discussion on this frequently overlooked subject. We highlight the challenges related to energy consumption and environmental pollution. However, the lack of established protocols and reporting on biomaterials recycling prevents a comprehensive understanding of these challenges and potential solutions. Nevertheless, addressing these issues can lead to more efficient resource use and reduced environmental impact in the field of biomaterials.
RESUMO
Dendritic cells (DCs), professional antigen-presenting cells, function as sentinels of the immune system. DCs initiate and fine-tune adaptive immune responses by presenting antigenic peptides to B and T lymphocytes to mount an effective immune response against cancer and pathogens. However, hypoxia, a condition characterized by low oxygen (O2) tension in different tissues, significantly impacts DC functions, including antigen uptake, activation and maturation, migration, as well as T-cell priming and proliferation. In this study, we employed O2-releasing biomaterials (O2-cryogels) to study the effect of localized O2 supply on human DC phenotype and functions. Our results indicate that O2-cryogels effectively mitigate DC exposure to hypoxia under hypoxic conditions. Additionally, O2-cryogels counteract hypoxia-induced inhibition of antigen uptake and migratory activity in DCs through O2 release and hyaluronic acid (HA) mediated mechanisms. Furthermore, O2-cryogels preserve and restore DC maturation and co-stimulation markers, including HLA-DR, CD86, and CD40, along with the secretion of proinflammatory cytokines in hypoxic conditions. Finally, our findings demonstrate that the supplemental O2 released from the cryogels preserves DC-mediated T-cell priming, ultimately leading to the activation and proliferation of allogeneic CD3+ T cells. This work emphasizes the potential of local oxygenation as a powerful immunomodulatory agent to improve DC activation and functions in hypoxia, offering new approaches for cancer and infectious disease treatments.
Assuntos
Células Dendríticas , Neoplasias , Humanos , Materiais Biocompatíveis/farmacologia , Criogéis/farmacologia , Fenótipo , Antígenos/farmacologia , HipóxiaRESUMO
Breast cancer is a major health concern worldwide and is the leading cause of cancer-related death among American women. Traditional therapies, such as surgery, chemotherapy, and radiotherapy, are usually ineffective. Furthermore, cancer recurrence following targeted therapy often results from acquired drug resistance. Therefore, more realistic tumor models than monolayer cell culture for drug screening and discovery in an in vitro setting would facilitate the development of new therapeutic strategies. Toward this goal, we first developed a simple, rapid, low-cost, and high-throughput method for generating uniform multi-cellular tumor spheroids (MCTS) with controllable size. Next, biomimetic cryogel scaffolds fabricated from hyaluronic acid (HA) were utilized as a platform to reconstruct breast tumor microtissues with aspects of the complex tumor microenvironment in three dimensions. Finally, we investigated the interactions between the HA-based cryogels and CD44-positive breast tumor cells, individually or as MCTS. We found that incorporating the adhesive RGD peptide in cryogels led to the formation of a monolayer of tumor cells on the polymer walls, whereas MCTS cultured on RGD-free HA cryogels resulted in the growth of large and dense microtumors, more similar to native tumor masses. As a result, the MCTS-laden HA cryogel system induced a highly aggressive and chemotherapy drug-resistant tumor model. RGD-free HA-based cryogels represent an effective starting point for designing tumor models for preclinical research, therapeutic drug screening, and early cancer diagnosis.
RESUMO
Recent advances in materials science and engineering highlight the importance of designing sophisticated biomaterials with well-defined architectures and tunable properties for emerging biomedical applications. Click chemistry, a powerful method allowing specific and controllable bioorthogonal reactions, has revolutionized our ability to make complex molecular structures with a high level of specificity, selectivity, and yield under mild conditions. These features combined with minimal byproduct formation have enabled the design of a wide range of macromolecular architectures from quick and versatile click reactions. Furthermore, copper-free click chemistry has resulted in a change of paradigm, allowing researchers to perform highly selective chemical reactions in biological environments to further understand the structure and function of cells. In living systems, introducing clickable groups into biomolecules such as polysaccharides (PSA) has been explored as a general approach to conduct medicinal chemistry and potentially help solve healthcare needs. De novo biosynthetic pathways for chemical synthesis have also been exploited and optimized to perform PSA-based bioconjugation inside living cells without interfering with their native processes or functions. This strategy obviates the need for laborious and costly chemical reactions which normally require extensive and time-consuming purification steps. Using these approaches, various PSA-based macromolecules have been manufactured as building blocks for the design of novel biomaterials. Clickable PSA provides a powerful and versatile toolbox for biomaterials scientists and will increasingly play a crucial role in the biomedical field. Specifically, bioclick reactions with PSA have been leveraged for the design of advanced drug delivery systems and minimally invasive injectable hydrogels. In this review article, we have outlined the key aspects and breadth of PSA-derived bioclick reactions as a powerful and versatile toolbox to design advanced polymeric biomaterials for biomedical applications such as molecular imaging, drug delivery, and tissue engineering. Additionally, we have also discussed the past achievements, present developments, and recent trends of clickable PSA-based biomaterials such as 3D printing, as well as their challenges, clinical translatability, and future perspectives.
RESUMO
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
RESUMO
Synthetic cancer vaccines may boost anticancer immune responses by co-delivering tumor antigens and adjuvants to dendritic cells (DCs). The accessibility of cancer vaccines to DCs and thereby the delivery efficiency of antigenic material greatly depends on the vaccine platform that is used. Three-dimensional scaffolds have been developed to deliver antigens and adjuvants locally in an immunostimulatory environment to DCs to enable sustained availability. However, current systems have little control over the release profiles of the cargo that is incorporated and are often characterized by an initial high-burst release. Here, an alternative system is designed that co-delivers antigens and adjuvants to DCs through cargo-loaded nanoparticles (NPs) incorporated within biomaterial-based scaffolds. This creates a programmable system with the potential for controlled delivery of their cargo to DCs. Cargo-loaded poly(d,l-lactic-co-glycolic acid) NPs are entrapped within the polymer walls of alginate cryogels with high efficiency while retaining the favorable physical properties of cryogels, including syringe injection. DCs cultured within these NP-loaded scaffolds acquire strong antigen-specific T cell-activating capabilities. These findings demonstrate that introduction of NPs into the walls of macroporous alginate cryogels creates a fully synthetic immunostimulatory niche that stimulates DCs and evokes strong antigen-specific T cell responses.
Assuntos
Vacinas Anticâncer , Ácido Poliglicólico , Células Dendríticas , Ácido Láctico , Linfócitos TRESUMO
For several biomedical applications, it is essential to develop novel bioactive materials. Such biomaterials could potentially improve wound healing, prevent infections, or be used in immunoengineering. For example, bioactive materials that reduce oxidative stress without relying on antibiotics and other drugs could be beneficial. Hydrogel-based biomaterials, especially those derived from natural polymers, have been regarded as one of the most promising scaffolds for biomedical research. These multifunctional scaffolds can exhibit high water adsorption capacity, biocompatibility, and biomechanical properties that can match native tissues. Cryogels are a special type of hydrogels in which polymers are cross-linked around ice crystals. As a result, cryogels exhibit unique physical features, including a macroporous and interconnected network, flexibility, shape-memory properties, and syringe injectability. Herein, we developed a multifunctional, i.e., antibacterial, antioxidant, and injectable cryogel by combining lignin with gelatin. The cryogel with 0.2% lignin showed a compressive modulus of 25 kPa and a compressive stress of 140 kPa at 80% strain, which is, respectively, 1.8 and 7 times higher than those of the pure gelatin cryogels. Meanwhile, such a cryogel formulation could completely recover its shape after compression up to 90% and was needle-injectable. Additionally, the lignin-co-gelatin cryogel with 0.1-0.2 lignin showed 8-10 mm of inhibition zone against the most common surgical site infection-associated pathogenic bacteria. Furthermore, lignin-co-gelatin cryogel was found to scavenge free radicals and have good cytocompatibility, and the cryogels with up to 0.2% lignin minimally activate naïve mouse bone marrow-derived dendritic cells. Overall, the current approach shows great promise for the design of bioresource-based multifunctional cryogels for a wide range of biomedical applications.