Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Adv Ther ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722537

RESUMO

INTRODUCTION: Spinal muscular atrophy (SMA) is a rare, autosomal recessive, neuromuscular disease that leads to progressive muscular weakness and atrophy. Nusinersen, an antisense oligonucleotide, was approved for SMA in China in February 2019. We report interim results from a post-marketing surveillance phase 4 study, PANDA (NCT04419233), that collects data on the safety, efficacy, and pharmacokinetics of nusinersen in children with SMA in routine clinical practice in China. METHODS: Participants enrolled in PANDA will be observed for 2 years following nusinersen treatment initiation. The primary endpoint is the incidence of adverse events (AEs)/serious AEs (SAEs) during the treatment period. Efficacy assessments include World Health Organization (WHO) Motor Milestones assessment, the Hammersmith Infant Neurological Examination (HINE), and ventilation support. Plasma and cerebrospinal fluid (CSF) concentrations of nusinersen are measured at each dose visit. RESULTS: Fifty participants were enrolled as of the January 4, 2023, data cutoff: 10 with infantile-onset (≤ 6 months) and 40 with later-onset (> 6 months) SMA. All 50 participants have received at least one dose of nusinersen; 6 have completed the study. AEs were experienced by 45 (90%) participants and were mostly mild/moderate; no AEs led to nusinersen discontinuation or study withdrawal. Eleven participants experienced SAEs, most commonly pneumonia (n = 9); none were considered related to study treatment. Stability or gain of WHO motor milestone was observed and mean HINE-2 scores improved in both subgroups throughout the study. No serious respiratory events occurred, and no permanent ventilation support was initiated during the study. Pre-dose nusinersen CSF concentrations increased steadily through the loading-dose period, with no accumulation in plasma after multiple doses. CONCLUSION: Nusinersen was generally well tolerated with an acceptable overall safety profile, consistent with the known safety of nusinersen. Efficacy, safety, and nusinersen exposure are consistent with prior observations. These results support continuing PANDA and evaluation of nusinersen in Chinese participants with SMA. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04419233.

2.
J Clin Med ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37568304

RESUMO

Nusinersen has been shown to improve or stabilize motor function in individuals with spinal muscular atrophy (SMA). We evaluated baseline scoliosis severity and motor function in nusinersen-treated non-ambulatory children with later-onset SMA. Post hoc analyses were conducted on 95 children initiating nusinersen treatment in the CHERISH study or SHINE long-term extension trial. Participants were categorized by baseline Cobb angle (first nusinersen dose): ≤10°, >10° to ≤20°, and >20° to <40° (no/mild/moderate scoliosis, respectively). Outcome measures included the Hammersmith Functional Motor Score-Expanded (HFMSE) and the Revised Upper Limb Module (RULM). Regression analysis determined the relationships between baseline scoliosis severity and later motor function. For children with no, mild, and moderate scoliosis, the mean increase in HFMSE from baseline to Day 930 was 6.0, 3.9, and 0.7 points, and in RULM was 6.1, 4.6, and 2.3 points. In the linear model, a 10° increase in baseline Cobb angle was significantly associated with a -1.4 (95% CI -2.6, -0.2) point decrease in HFMSE (p = 0.02) and a -1.2 (95% CI -2.1, -0.4) point decrease in RULM (p = 0.006) at Day 930. Treatment with nusinersen was associated with improvements/stabilization in motor function in all groups, with greater response in those with no/mild scoliosis at baseline.

3.
Muscle Nerve ; 68(2): 157-170, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409780

RESUMO

INTRODUCTION/AIMS: NURTURE (NCT02386553) is an open-label study of nusinersen in children (two SMN2 copies, n = 15; three SMN2 copies, n = 10) who initiated treatment in the presymptomatic stage of spinal muscular atrophy (SMA). A prior analysis after ~3 y showed benefits on survival, respiratory outcomes, motor milestone achievement, and a favorable safety profile. An additional 2 y of follow-up (data cut: February 15, 2021) are reported. METHODS: The primary endpoint is time to death or respiratory intervention (≥6 h/day continuously for ≥7 days or tracheostomy). Secondary outcomes include overall survival, motor function, and safety. RESULTS: Median age of children was 4.9 (3.8-5.5) y at last visit. No children have discontinued the study or treatment. All were alive. No additional children utilized respiratory intervention (defined per primary endpoint) since the prior data cut. Children with three SMN2 copies achieved all World Health Organization (WHO) motor milestones, with all but one milestone in one child within normal developmental timeframes. All 15 children with two SMN2 copies achieved sitting without support, 14/15 walking with assistance, and 13/15 walking alone. Mean Hammersmith Functional Motor Scale Expanded total scores showed continued improvement. Subgroups with two SMN2 copies, minimum baseline compound muscle action potential amplitude ≥2 mV, and no baseline areflexia had better motor and nonmotor outcomes versus all children with two SMN2 copies. DISCUSSION: These results demonstrate the value of early treatment, durability of treatment effect, and favorable safety profile after ~5 y of nusinersen treatment. Inclusion/exclusion criteria and baseline characteristics should be considered when interpreting presymptomatic SMA trial data.


Assuntos
Atrofia Muscular Espinal , Atrofias Musculares Espinais da Infância , Criança , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/uso terapêutico , Caminhada , Atrofias Musculares Espinais da Infância/tratamento farmacológico
4.
J Neuromuscul Dis ; 10(5): 813-823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393513

RESUMO

BACKGROUND: Pharmacokinetic/pharmacodynamic modeling indicates that the higher dose of nusinersen may be associated with a clinically meaningful increase in efficacy above that seen with the 12-mg approved dose. OBJECTIVE: Here we describe both the design of DEVOTE (NCT04089566), a 3-part clinical study evaluating safety, tolerability, and efficacy of higher dose of nusinersen, and results from the initial Part A. METHODS: DEVOTE Part A evaluates safety and tolerability of a higher nusinersen dose; Part B assesses efficacy in a randomized, double-blind design; and Part C assesses safety and tolerability of participants transitioning from the 12-mg dose to higher doses. RESULTS: In the completed Part A of DEVOTE, all 6 enrolled participants aged 6.1-12.6 years have completed the study. Four participants experienced treatment-emergent adverse events (TEAEs), the majority of which were mild. Common TEAEs of headache, pain, chills, vomiting, and paresthesia were considered related to the lumbar puncture procedure. There were no safety concerns regarding clinical or laboratory parameters. Nusinersen levels in the cerebrospinal fluid were within the range of modeled predictions for higher dose of nusinersen. While Part A was not designed for assessing efficacy, most participants showed stabilization or improvement in motor function. Parts B and C of DEVOTE are ongoing. CONCLUSIONS: The findings from Part A of the DEVOTE study support further development of higher dose of nusinersen.


Assuntos
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/efeitos adversos , Dor , Projetos de Pesquisa , Criança
5.
CPT Pharmacometrics Syst Pharmacol ; 12(2): 196-206, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36471456

RESUMO

Phosphorylated neurofilament heavy subunit (pNfH) has been recently identified as a promising biomarker of disease onset and treatment efficacy in spinal muscular atrophy (SMA). This study introduces a quantitative systems pharmacology model representing the SMA pediatric scenario in the age range of 0-20 years with and without treatment with the antisense oligonucleotide nusinersen. Physiological changes typical of the pediatric age and the contribution of SMA and its treatment to the peripheral pNfH levels were included in the model by extending the equations of a previously developed mathematical model describing the neurofilament trafficking in healthy adults. All model parameters were estimated by fitting data from clinical trials that enrolled SMA patients treated with nusinersen. The data from the control group of the study was employed to build an in silico population of untreated subjects, and the parameters related to the treatment were estimated by fitting individual pNfH time series of SMA patients followed during the treatment. The final model reproduces well the pNfH levels in the presence of SMA in both the treated and untreated conditions. The results were validated by comparing model predictions with the data obtained from an additional cohort of SMA patients. The reported good predictive model performance makes it a valuable tool for investigating pNfH as a biomarker of disease progression and treatment response in SMA and for the in silico evaluation of novel treatment protocols.


Assuntos
Atrofia Muscular Espinal , Oligonucleotídeos Antissenso , Adulto , Humanos , Criança , Recém-Nascido , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Filamentos Intermediários , Farmacologia em Rede , Atrofia Muscular Espinal/tratamento farmacológico , Biomarcadores
6.
Ann Clin Transl Neurol ; 9(6): 819-829, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567345

RESUMO

OBJECTIVE: The long-term favorable safety profile of nusinersen provides an opportunity to consider a higher dose. We report on the relationships between nusinersen cerebrospinal fluid (CSF) exposure, biomarker levels, and clinical efficacy. METHODS: The analyses used data from the CS3A and ENDEAR studies of nusinersen in participants with infantile-onset spinal muscular atrophy (SMA). Steady-state CSF trough (Ctrough ) levels, plasma phosphorylated neurofilament heavy chain (pNF-H) levels, body weight, and Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) scores were selected as parameters of interest. A validated population pharmacokinetic (PK) model was applied to predict the nusinersen CSF Ctrough . PK/pharmacodynamic (PK/PD) models used nusinersen CSF Ctrough measurements, which were time-matched with CHOP INTEND scores. RESULTS: Higher nusinersen CSF exposure was associated with a greater decrease in pNF-H levels and greater efficacy, as measured by change in the CHOP INTEND score from baseline. These findings indicate a dose-response relationship between CSF nusinersen levels and treatment response. The higher dose is predicted to lead to approximately a 2.4-fold increase in nusinersen CSF levels with fewer loading doses. PK/PD modeling indicates that a higher concentration of nusinersen may predict an additional 5-point increase in CHOP INTEND score beyond that observed with 12 mg. INTERPRETATION: Our data indicate that a higher dose of nusinersen may lead to additional clinically meaningful improvement in efficacy when compared with the currently approved 12-mg dose. The efficacy, safety, and PK of a higher nusinersen dose are currently under investigation in the ongoing phase 2/3 DEVOTE study (NCT04089566).


Assuntos
Atrofias Musculares Espinais da Infância , Biomarcadores , Criança , Humanos , Lactente , Oligonucleotídeos/farmacocinética , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Resultado do Tratamento
8.
CNS Drugs ; 36(2): 181-190, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080757

RESUMO

BACKGROUND: Nusinersen is approved for the treatment of spinal muscular atrophy. The most common approved dosing regimen is four intrathecal loading doses of nusinersen 12 mg; the first three are administered at 14-day intervals followed by a fourth dose 30 days later, and then 12-mg maintenance doses are administered every 4 months thereafter. Interruption of nusinersen treatment in the maintenance dosing phase might occur for a number of clinical reasons. OBJECTIVE: The objective of this report is to describe dosing regimens that allow for the most rapid restoration of steady-state concentrations of nusinersen in the cerebrospinal fluid (CSF) following a treatment interruption during maintenance dosing. METHODS: Population pharmacokinetic models using integrated pharmacokinetic data from ten nusinersen clinical trials that included a broad range of participants with spinal muscular atrophy treated with intrathecal nusinersen were used to investigate different durations of treatment interruptions during maintenance treatment. Potential dosing regimens for re-initiation of nusinersen were evaluated, with the goal of achieving the quickest restoration of steady-state nusinersen CSF concentrations without exceeding maximal CSF exposures observed during the initial loading period. RESULTS: Our pharmacokinetic modeling indicates the following regimen will lead to optimal restoration of nusinersen CSF levels after treatment interruption: two doses of nusinersen should be administered at 14-day intervals following treatment interruptions of ≥ 8 to < 16 months since the last dose, and three doses of nusinersen at 14-day intervals for treatment interruptions of ≥ 16 to < 40 months since the last maintenance dose, with subsequent maintenance dosing every 4 months in both instances. After treatment interruptions of ≥ 40 months, the full loading regimen will rapidly restore nusinersen CSF levels. CONCLUSIONS: Prolonged treatment interruptions lead to suboptimal CSF levels of nusinersen. The optimal regimen to restore nusinersen CSF levels depends on the interval since the last maintenance dose was administered.


Nusinersen is a drug used to treat people of all ages who have spinal muscular atrophy. Nusinersen is injected with a thin needle into the lower back, a procedure known as a lumbar puncture. People initially receive three doses of nusinersen 12 mg each 14 days apart. They receive a fourth dose 1 month later, and then injections every 4 months (known as maintenance dosing). This treatment plan allows nusinersen to build up to effective levels in the fluid surrounding the spinal cord and brain. Some people may miss dose(s) or may stop nusinersen treatment at some point during maintenance dosing and then may want to continue treatment. This study used information from ten clinical trials to find out the best way to restart treatment to build up nusinersen to effective levels. People with a treatment break of ≥ 8 to < 16 months since the last dose need two doses of nusinersen at 14-day intervals before receiving maintenance dosing. People with a treatment break of ≥ 16 to < 40 months since the last dose need three doses of nusinersen at 14-day intervals before receiving maintenance dosing. If people stopped treatment for ≥ 40 months, they would need four doses before starting maintenance treatment. Results from this study showed that the number of doses that people needed before starting maintenance treatment depended on how long the treatment break was.


Assuntos
Relação Dose-Resposta a Droga , Monitoramento de Medicamentos/métodos , Quimioterapia de Manutenção/métodos , Atrofia Muscular Espinal , Oligonucleotídeos , Esquema de Medicação , Duração da Terapia , Humanos , Injeções Espinhais/métodos , Modelos Biológicos , Atrofia Muscular Espinal/líquido cefalorraquidiano , Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/líquido cefalorraquidiano , Oligonucleotídeos/farmacocinética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/líquido cefalorraquidiano , Oligonucleotídeos Antissenso/farmacocinética , Resultado do Tratamento
9.
Neuromuscul Disord ; 31(4): 310-318, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33781694

RESUMO

Nusinersen is an antisense oligonucleotide approved for the treatment of spinal muscular atrophy. The drug is given intrathecally at 12 mg, beginning with 3 loading doses at 2-week intervals, a fourth loading dose 30 days thereafter, and maintenance doses at 4-month intervals. This population pharmacokinetic model was developed to clarify how to maintain targeted nusinersen exposure after an unforeseen one-time delay or missed dose. Simulations demonstrated that the impact of a one-time delay in dosing or a missed dose on median cerebrospinal fluid exposures depended on duration of interruption and the regimen phase in which it occurred. Delays in loading doses delayed reaching the peak trough concentration by approximately the duration of the interruption. Resumption of the regimen as soon as possible resulted in achieving steady state trough concentration upon completion of the loading phase. A short delay (30-90 days) during the maintenance phase led to prolonged lower median cerebrospinal fluid concentration if all subsequent doses were shifted by the same 4-month interval. However, administration of the delayed dose, followed by the subsequent dose as originally scheduled, rapidly restored trough concentration. If a dose must be delayed, patients should return to the original dosing schedule as soon as possible.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Oligonucleotídeos/farmacocinética , Humanos , Oligonucleotídeos/administração & dosagem
10.
PLoS One ; 10(3): e0119141, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763858

RESUMO

Mutations in glucocerebrosidase (GBA1) cause Gaucher disease and also represent a common risk factor for Parkinson's disease and Dementia with Lewy bodies. Recently, new tool molecules were described which can increase turnover of an artificial substrate 4MUG when incubated with mutant N370S GBA1 from human spleen. Here we show that these compounds exert a similar effect on the wild-type enzyme in a cell-free system. In addition, these tool compounds robustly increase turnover of 4MUG by GBA1 derived from human cortex, despite substantially lower glycosylation of GBA1 in human brain, suggesting that the degree of glycosylation is not important for compound binding. Surprisingly, these tool compounds failed to robustly alter GBA1 turnover of 4MUG in the mouse brain homogenate. Our data raise the possibility that in vivo models with humanized glucocerebrosidase may be needed for efficacy assessments of such small molecules.


Assuntos
Encéfalo/enzimologia , Glucosilceramidase/metabolismo , Himecromona/análogos & derivados , Animais , Sistema Livre de Células , Glucosilceramidase/genética , Glicosilação , Humanos , Himecromona/metabolismo , Camundongos
11.
J Med Chem ; 58(1): 419-32, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25353650

RESUMO

Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson's disease (PD) by genome-wide association studies (GWAS). The most common LRRK2 mutation, G2019S, which is relatively rare in the total population, gives rise to increased kinase activity. As such, LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the discovery and optimization of a novel series of potent LRRK2 inhibitors, focusing on improving kinome selectivity using a surrogate crystallography approach. This resulted in the identification of 14 (PF-06447475), a highly potent, brain penetrant and selective LRRK2 inhibitor which has been further profiled in in vivo safety and pharmacodynamic studies.


Assuntos
Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteoma/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Sequência de Aminoácidos , Animais , Área Sob a Curva , Encéfalo/metabolismo , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação de Sentido Incorreto , Nitrilas/química , Nitrilas/farmacocinética , Doença de Parkinson/tratamento farmacológico , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteoma/química , Proteoma/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirróis/química , Pirróis/farmacocinética , Ratos
12.
Bioorg Med Chem Lett ; 24(17): 4132-40, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25113930
13.
J Neurochem ; 129(5): 884-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24494600

RESUMO

Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.


Assuntos
Autofagia/fisiologia , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Neurônios/fisiologia , Animais , Western Blotting , Células Cultivadas , Dioxanos/farmacologia , Feminino , Glicoesfingolipídeos/biossíntese , Células HEK293 , Humanos , Masculino , Meperidina/análogos & derivados , Meperidina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Oncogênica v-akt/metabolismo , Doença de Parkinson/genética , Fosforilação , Cultura Primária de Células , Pirrolidinas/farmacologia , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
14.
PLoS One ; 8(8): e70274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936403

RESUMO

Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD.


Assuntos
Comportamento Animal/fisiologia , Mutação , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/genética , Acústica , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Ansiedade/complicações , Peso Corporal/genética , Cognição , Asseio Animal , Hipocampo/fisiopatologia , Humanos , Masculino , Memória , Camundongos , Atividade Motora/genética , Comportamento de Nidação , Plasticidade Neuronal/genética , Fenótipo , Equilíbrio Postural , Reflexo de Sobressalto/genética , Comportamento Espacial/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/genética , Fatores de Tempo
15.
PLoS One ; 8(12): e85815, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24392030

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease. A key pathological feature of PD is Lewy bodies, of which the major protein component is α-synuclein (α-syn). Human genetic studies have shown that mutations (A53T, A30P, E46K) and multiplication of the α-syn gene are linked to familial PD. Mice overexpressing the human A53T mutant α-syn gene develop severe movement disorders. However, the molecular mechanisms of α-syn toxicity are not well understood. Recently, mitochondrial dysfunction has been linked with multiple neurodegenerative diseases including Parkinson's disease. Here we investigated whether mitochondrial motility, dynamics and respiratory function are affected in primary neurons from a mouse model expressing the human A53T mutation. We found that mitochondrial motility was selectively inhibited in A53T neurons while transport of other organelles was not affected. In addition, A53T expressing neurons showed impairment in mitochondrial membrane potential and mitochondrial respiratory function. Furthermore, we found that rapamycin, an autophagy inducer, rescued the decreased mitochondrial mobility. Taken together, these data demonstrate that A53T α-syn impairs mitochondrial function and dynamics and the deficit of mitochondrial transport is reversible, providing further understanding of the disease pathogenesis and a potential therapeutic strategy for PD.


Assuntos
Córtex Cerebral/citologia , Mitocôndrias/metabolismo , Mutação , Neurônios/citologia , alfa-Sinucleína/genética , Animais , Transporte Biológico/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Fenótipo , Sirolimo/farmacologia
16.
Biochemistry ; 49(26): 5511-23, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20515039

RESUMO

Autosomal dominant mutations in leucine rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). Despite the presence of multiple domains, the kinase activity of LRRK2 is thought to represent the primary function of the protein. Alterations in LRRK2 kinase activity are thought to underlie the pathogenesis of its PD-linked mutations; however, many questions regarding basic aspects of LRRK2 function remain unclear, including the cellular mechanisms of LRRK2 regulation and the importance of its unique distribution within the cell. Here, we demonstrate for the first time that the subcellular localization of wild-type LRRK2 is associated with changes in four distinct biochemical properties likely crucial for LRRK2 function. Our data demonstrate for the first time that the wild-type LRRK2 dimer possesses greater kinase activity than its more abundant monomeric counterpart. Importantly, we show that this activated form of LRRK2 is substantially enriched at the membrane of cells expressing endogenous or exogenous LRRK2, and that the membrane-associated fraction of LRRK2 likewise possesses greater kinase activity than cytosolic LRRK2. In addition, membrane-associated LRRK2 binds GTP more efficiently than cytosolic LRRK2 but demonstrates a lower degree of phosphorylation. Our observations suggest that multiple events, including altered protein-protein interactions and post-translational modifications, contribute to the regulation of LRRK2 function, through modulation of membrane association and complex assembly. These findings may have implications for the sites of LRRK2 function within the cell, the identification and localization of bona fide LRRK2 substrates, and efforts to design small molecule inhibitors of LRRK2.


Assuntos
Membrana Celular/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/análise , Linhagem Celular , Citosol , Ativação Enzimática , Guanosina Trifosfato/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
18.
J Neurosci ; 27(14): 3650-62, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17409229

RESUMO

Neurofibrillary tangles (NFTs) are a pathological hallmark of Alzheimer's disease and other tauopathies, but recent studies in a conditional mouse model of tauopathy (rTg4510) have suggested that NFT formation can be dissociated from memory loss and neurodegeneration. This suggests that NFTs are not the major neurotoxic tau species, at least during the early stages of pathogenesis. To identify other neurotoxic tau protein species, we performed biochemical analyses on brain tissues from the rTg4510 mouse model and then correlated the levels of these tau proteins with memory loss. We describe the identification and characterization of two forms of tau multimers (140 and 170 kDa), whose molecular weight suggests an oligomeric aggregate, that accumulate early in the pathogenic cascade in this mouse model. Similar tau multimers were detected in a second mouse model of tauopathy (JNPL3) and in tissue from patients with Alzheimer's disease and FTDP-17 (frontotemporal dementia and parkinsonism linked to chromosome 17). Moreover, levels of the tau multimers correlated consistently with memory loss at various ages in the rTg4510 mouse model. Our findings suggest that accumulation of early-stage aggregated tau species, before the formation of NFT, is associated with the development of functional deficits during the pathogenic progression of tauopathy.


Assuntos
Modelos Animais de Doenças , Transtornos da Memória/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/biossíntese , Proteínas tau/genética , Proteínas tau/fisiologia
19.
Nature ; 442(7105): 916-9, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16862116

RESUMO

Frontotemporal dementia (FTD) is the second most common cause of dementia in people under the age of 65 years. A large proportion of FTD patients (35-50%) have a family history of dementia, consistent with a strong genetic component to the disease. In 1998, mutations in the gene encoding the microtubule-associated protein tau (MAPT) were shown to cause familial FTD with parkinsonism linked to chromosome 17q21 (FTDP-17). The neuropathology of patients with defined MAPT mutations is characterized by cytoplasmic neurofibrillary inclusions composed of hyperphosphorylated tau. However, in multiple FTD families with significant evidence for linkage to the same region on chromosome 17q21 (D17S1787-D17S806), mutations in MAPT have not been found and the patients consistently lack tau-immunoreactive inclusion pathology. In contrast, these patients have ubiquitin (ub)-immunoreactive neuronal cytoplasmic inclusions and characteristic lentiform ub-immunoreactive neuronal intranuclear inclusions. Here we demonstrate that in these families, FTD is caused by mutations in progranulin (PGRN) that are likely to create null alleles. PGRN is located 1.7 Mb centromeric of MAPT on chromosome 17q21.31 and encodes a 68.5-kDa secreted growth factor involved in the regulation of multiple processes including development, wound repair and inflammation. PGRN has also been strongly linked to tumorigenesis. Moreover, PGRN expression is increased in activated microglia in many neurodegenerative diseases including Creutzfeldt-Jakob disease, motor neuron disease and Alzheimer's disease. Our results identify mutations in PGRN as a cause of neurodegenerative disease and indicate the importance of PGRN function for neuronal survival.


Assuntos
Cromossomos Humanos Par 17/genética , Demência/genética , Lobo Frontal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação/genética , Precursores de Proteínas/genética , Lobo Temporal/fisiopatologia , Sobrevivência Celular , Códon de Terminação/genética , Demência/fisiopatologia , Lobo Frontal/metabolismo , Ligação Genética/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Mapeamento Físico do Cromossomo , Progranulinas , Precursores de Proteínas/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lobo Temporal/metabolismo , Proteínas tau/deficiência , Proteínas tau/genética
20.
Int J Biochem Cell Biol ; 38(9): 1457-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16530457

RESUMO

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset, autosomal dominant disease caused by the abnormal expansion of a polyalanine tract within the coding region of poly(A) binding protein nuclear 1 (PABPN1). The resultant mutant PABPN1 forms aggregates within the nuclei of skeletal muscle fibres. The mechanism by which the polyalanine expansion mutation in PABN1 causes disease is unclear. However, the mutation is thought to confer a toxic gain-of-function on the protein. Despite controversy over the role of aggregates, it has been consistently shown that agents that reduce aggregate load in cell models of OPMD also reduce levels of cell death. Recently generated animal models of OPMD will help elucidate the mechanism of disease and allow the trial of potential therapeutics. Indeed, administration of known anti-aggregation drugs attenuated muscle weakness in an OPMD mouse model. This suggests that anti-aggregation therapies may be beneficial in OPMD.


Assuntos
Distrofia Muscular Oculofaríngea/tratamento farmacológico , Proteína II de Ligação a Poli(A)/genética , Animais , Modelos Animais de Doenças , Doxiciclina/uso terapêutico , Humanos , Corpos de Inclusão/metabolismo , Distrofia Muscular Oculofaríngea/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Trealose/uso terapêutico , Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA