Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37481695

RESUMO

Polyhydroxyalkanoates (PHAs) are bioplastics that can serve as substitutes for petroleum-based plastics with the advantages of being biodegradable, biocompatible, and biobased. The microbial production of polyhydroxyalkanoates is generally conducted in the presence of sugar mixes rich in monosaccharides. In this study, molecular and cultural approaches based on forest soils enriched with hydrocarbon complexes led to the identification and isolation of microbial strains affiliated with Paraburkholderia sp. that dominated the microbial communities that are recognized among the top polyhydroxyalkanoates producers. The genome sequencing of those isolated affiliated strains showed that compared to the reference type strain of their species, they harbored more gene copies of the enzymes involved in PHB synthesis. The microbial conversion of sugar mixes for the newly isolated strains showed a higher PHB production (g/L) and content (%) than was exhibited by the reference strain type of that genus Paraburkholderia for PHB production (P. sacchari LMG 19450T).


Assuntos
Poli-Hidroxialcanoatos , Biopolímeros , Plásticos , Açúcares
2.
Mol Genet Genomics ; 298(5): 1135-1154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335345

RESUMO

The Acidobacteria phylum is a very abundant group (20-30% of microbial communities in soil ecosystems); however, little is known about these microorganisms and their ability to degrade the biomass and lignocellulose due to the difficulty of culturing them. We, therefore, bioinformatically studied the content of lignocellulolytic enzymes (total and predicted secreted enzymes) and secreted peptidases in an in silico library containing 41 Acidobacteria genomes. The results showed a high abundance and diversity of total and secreted Carbohydrate-Active enzymes (cazyme) families among the Acidobacteria compared to known previous degraders. Indeed, the relative abundance of cazymes in some genomes represented more than 6% of the gene coding proteins with at least 300 cazymes. The same observation was made with the predicted secreted peptidases with several families of secreted peptidases, which represented at least 1.5% of the gene coding proteins in several genomes. These results allowed us to highlight the lignocellulolytic potential of the Acidobacteria phylum in the degradation of lignocellulosic biomass, which could explain its high abundance in the environment.


Assuntos
Acidobacteria , Microbiota , Acidobacteria/genética , Complexo de Endopeptidases do Proteassoma , Biomassa , Carboidratos
3.
Mycologia ; 115(5): 579-601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37358885

RESUMO

Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.


Assuntos
Ascomicetos , Biomassa , Fatores de Virulência , Polissacarídeos
4.
Fungal Biol ; 127(5): 1010-1031, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142361

RESUMO

The Botryosphaeriaceae family comprises numerous fungal pathogens capable of causing economically meaningful diseases in a wide range of crops. Many of its members can live as endophytes and turn into aggressive pathogens following the onset of environmental stress events. Their ability to cause disease may rely on the production of a broad set of effectors, such as cell wall-degrading enzymes, secondary metabolites, and peptidases. Here, we conducted comparative analyses of 41 genomes representing six Botryosphaeriaceae genera to provide insights into the genetic features linked to pathogenicity and virulence. We show that these Botryosphaeriaceae genomes possess a large diversity of carbohydrate-active enzymes (CAZymes; 128 families) and peptidases (45 families). Botryosphaeria, Neofusicoccum, and Lasiodiplodia presented the highest number of genes encoding CAZymes involved in the degradation of the plant cell wall components. The genus Botryosphaeria also exhibited the highest abundance of secreted CAZymes and peptidases. Generally, the secondary metabolites gene cluster profile was consistent in the Botryosphaeriaceae family, except for Diplodia and Neoscytalidium. At the strain level, Neofusicoccum parvum NpBt67 stood out among all the Botryosphaeriaceae genomes, presenting a higher number of secretome constituents. In contrast, the Diplodia strains showed the lowest richness of the pathogenicity- and virulence-related genes, which may correlate with their low virulence reported in previous studies. Overall, these results contribute to a better understanding of the mechanisms underlying pathogenicity and virulence in remarkable Botryosphaeriaceae species. Our results also support that Botryosphaeriaceae species could be used as an interesting biotechnological tool for lignocellulose fractionation and bioeconomy.


Assuntos
Ascomicetos , Virulência/genética , Doenças das Plantas/microbiologia
5.
Curr Microbiol ; 80(4): 114, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826511

RESUMO

The Gram-negative, oxidase-negative, catalase-positive, rod-shaped strain Arafor3T was isolated from forest soil (France). Comparative 16S rRNA gene analysis and phylogenetic analysis based on (1) multilocus sequence analysis (MLSA) with four housekeeping genes (atpD, gyrB, infB and rpoB) and (2) genomes indicated that strain Arafor3T shared 98.83% 16S rRNA gene sequence similarity with the type strain of Serratia fonticola DSM 4576T and was closely related to this same strain in the MLSA and in the phylogenomic tree reconstruction. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) comparisons of strain Arafor3T with its nearest neighbor S. fonticola DSM 4576T showed 93.5% identity and 55.7% sequence similarity, respectively, and were lower than the 96% and 70% species-level cut-off values relating to these analyses (Logan et al. in Int J Syst Evol Microbiol 59:2114-21, 2009, https://doi.org/10.1099/ijs.0.013649-0 ). The strain differed from S. fonticola in that it was urease and arginine dihydrolase negative. The major fatty acids of strain Arafor3T are C16:0, C16:1 ω7c/C16:1 ω6c, C14:0, C14:0 3-OH/16:1 isoI, and C18:1 ω7c. The major respiratory quinone is Q8. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and 6 unknown lipids. The mol G + C% content of the genomic DNA of strain Arafor3T was 53.49%. Hence, Arafor3T represents a novel species within the genus Serratia, for which the name Serratia silvae sp. nov. is proposed. The type strain is Arafor3T (=LMG 32338T = CIP 111939T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Serratia/genética , Hibridização de Ácido Nucleico , Florestas , Técnicas de Tipagem Bacteriana
6.
FEMS Microbiol Lett ; 369(1)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302146

RESUMO

Streptomyces coelicolor A3(2) is considered as the model strain among the Streptomyces and has the capacity to produce several natural molecules. Our hypothesis was that cultivation of the strain onto a complex carbon source such as wheat bran (WB) would induce the production of various secondary metabolites due to the presence of complex polysaccharides. A multiapproach has been performed in order to investigate: (1) whether that strain could degrade lignocellulose; (2) which enzymatic and metabolic pathways secondary were over-expressed when grown on WB. The transcriptomic approach showed the expression of several CAZymes significantly expressed when grown on WB such as endoglucanases (encoding for GH74, GH5_8, and GH12) and xylanases (GH11 and CE4 encoding for respectively endo-1,4-beta-xylanase and an acetyl-xylan esterase). Enzymatic activities showed an expression of xylanase (115.3 ± 32.2 mUI/ml) and laccase-peroxidase (101.5 ± 10.9 mUI/ml) during WB degradation by S. coelicolor A3(2). Metabolomics showed that the production of secondary metabolites differed between growth on either glucose or WB as carbon source, which may be correlated to the complexity of carbon compounds within WB, which are similar to the ones encountered in soils and should represent more the in situ carbon conditions which Streptomyces might face off. This opens opportunities for the bioproduction of molecules of interest from WB.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/metabolismo , Transcriptoma , Lignina/metabolismo , Streptomyces/metabolismo , Carbono/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36048630

RESUMO

Strain RHZ10T was isolated from an oak rhizosphere sampled in Reims, France, and characterized to assess its taxonomy. Based on 16S rRNA gene sequence similarity, strain RHZ10T was affiliated to the genus Streptomyces and the closest species were Streptomyces anulatus NRRL B-2000T and Streptomyces pratensis ch24T. Average nucleotide identity and digital DNA-DNA hybridization values were 77.3-92.4 % and 23.0-50.9 %, respectively, when compared to the type strains of fully sequenced related species having a 16S rRNA gene sequence similarity over 98 %. These data suggested that strain RHZ10T represented a novel species within the genus Streptomyces. The genome of RHZ10T was 8.0 Mbp long, had 7  894 predicted coding genes, and a G+C content of 71.7 mol%. Cultures of RHZ10T on ISP 2 medium mostly led to the production a green pigmentation of the core of its colonies in the vegetative mycelium, surrounded by white pigmentation of the aerial mycelium. The main fatty acids of RHZ10T were anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and C16 : 0. Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, unidentified lipids, unidentified phospholipids, unidentified aminolipids and unidentified glycolipids. Its main quinones were MK-9(H6) (69.3 %), MK-9(H4) (17.3 %) and MK-9(H8) (17.0%). Phylogenetic, physiological and chemotaxonomic studies clearly supported that strain RHZ10T represents a novel species within the genus Streptomyces, for which the name Streptomyces durocortorensis sp. nov. is proposed and the type strain is RHZ10T (=DSM 112634T=LMG 32187T=CIP 111907T).


Assuntos
Quercus , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Microbiologia do Solo
8.
Braz J Microbiol ; 53(4): 1829-1842, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36040685

RESUMO

The microorganisms living on the phyllosphere (the aerial part of the plants) are in contact with the lignocellulosic plant cell wall and might have a lignocellulolytic potential. We isolated a Saccharibacillus strain (Saccharibacillus WB17) from wheat bran phyllosphere and its cellulolytic and hemicellulolytic potential was investigated during growth onto wheat bran. Five other type strains from that genus selected from databases were also cultivated onto wheat bran and glucose. Studying the chemical composition of wheat bran residues by FTIR after growth of the six strains showed an important attack of the stretching C-O vibrations assigned to polysaccharides for all the strains, whereas the C = O bond/esterified carboxyl groups were not impacted. The genomic content of the strains showed that they harbored several CAZymes (comprised between 196 and 276) and possessed four of the fifth modules reflecting the presence of a high diversity of enzymes families. Xylanase and amylase activities were the most active enzymes with values reaching more than 4746 ± 1400 mIU/mg protein for the xylanase activity in case of Saccharibacillus deserti KCTC 33693 T and 452 ± 110 mIU/mg protein for the amylase activity of Saccharibacillus WB17. The total enzymatic activities obtained was not correlated to the total abundance of CAZyme along that genus. The Saccharibacillus strains harbor also some promising proteins in the GH30 and GH109 modules with potential arabinofuranosidase and oxidoreductase activities. Overall, the genus Saccharibacillus and more specifically the Saccharibacillus WB17 strain represent biological tools of interest for further biotechnological applications.


Assuntos
Bacillales , Fibras na Dieta , Polissacarídeos Bacterianos , Amilases , Fibras na Dieta/microbiologia , Genômica , Filogenia , Bacillales/classificação , Bacillales/isolamento & purificação , Polissacarídeos Bacterianos/química
9.
Curr Res Microb Sci ; 3: 100108, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35243445

RESUMO

Lignocellulose, the most abundant biomass on Earth, is a complex recalcitrant material mainly composed of three fractions: cellulose, hemicelluloses and lignins. In nature, lignocellulose is efficiently degraded for carbon recycling. Lignocellulose degradation involves numerous microorganisms and their secreted enzymes that act in synergy. Even they are efficient, the natural processes for lignocellulose degradation are slow (weeks to months). In this study, the objective was to study the synergism of some microorganisms to achieve efficient and rapid lignocellulose degradation. Wheat bran, an abundant co-product from milling industry, was selected as lignocellulosic biomass. Mono-cultures and co-cultures involving one A.niger strain fungi never sequenced before (DSM 1957) and either one of three different Streptomyces strains were tested in order to investigate the potentiality for efficient lignocellulose degradability. Comparative genomics of the strain Aspergillus niger DSM 1957 revealed that it harboured the maximum of AA, CBM, CE and GH among its closest relative strains. The different co-cultures set-up enriched the metabolic diversity and the lignocellulolytic CAZyme content. Depending on the co-cultures, an over-expression of some enzymatic activities (xylanase, glucosidase, arabinosidase) was observed in the co-cultures compared to the mono-cultures suggesting a specific microbial cross-talk depending on the microbial partner. Moreover, metabolomics for each mono and co-culture was performed and revealed an elicitation of the production of secondary metabolites and the activation of silent biosynthetic cluster genes depending on the microbial co-culture. This opens opportunities for the bioproduction of molecules of interest from wheat bran.

10.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34889725

RESUMO

A bacterial strain, named For3T, was isolated from forest soil sampled in Champenoux, France. Based on its 16S rRNA gene sequence, the strain was affiliated to the family Streptomycetaceae and, more specifically, to the genus Streptomyces. The strain had 99.93% 16S rRNA gene sequence similarity to its closest relative strains Streptomyces pratensis ATCC 33331T, Streptomyces anulatus ATCC 27416T, Streptomyces setonii NRRL ISP-5322T and Kitasatospora papulosa NRRL B-16504T. The phylogenomic tree using the genome blast distance phylogeny method showed that the closest relative strain was Streptomyces atroolivaceus NRRL ISP-5137T and that For3T represents a new branch among the Streptomyces. Genome relatedness indexes revealed that the average nucleotide identity and digital DNA-DNA hybridization values between For3T and its closest phylogenomic relative (S. atroolivaceus NRRL ISP-5137T) were 88.39 and 39.2 %, respectively. The G+C content of the genome was 71.4 mol% and its size was 7.96 Mb with 7492 protein-coding genes. Strain For3T harboured complete metabolic pathways absent in the closest relative strains such as cellulose biosynthesis, glycogen degradation I, glucosylglycerate biosynthesis I. Anteiso-C15:0, iso-C15:0, anteiso-C17:0 and MK-9(H4)/MK-9(H6) were the predominant cellular fatty acids and respiratory quinones, respectively. Phenotypic and genomic data supported the assignment of strain For3T to a novel species Streptomyces silvae sp. nov., within the genus Streptomyces, for which the type strain is For3T (=CIP 111908T=LMG 32186T).


Assuntos
Filogenia , Microbiologia do Solo , Streptomyces , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , França , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
FEMS Microbiol Ecol ; 97(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34734249

RESUMO

Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.


Assuntos
Bactérias , Ecossistema , Atmosfera , Biodiversidade , Biomassa
12.
Artigo em Inglês | MEDLINE | ID: mdl-34406922

RESUMO

A bacterial strain, arapr2T, was isolated from agricultural soil sampled in Reims, France. Based on its 16S rRNA gene sequence, the strain was affiliated to the family Sphingobacteriaceae and more specifically to the genus Sphingobacterium. The strain had 98.31 % 16S rRNA gene sequence similarity to its closest relative Sphingobacterium canadense CR11T and 98.25 % to Sphingobacterium pakistanensis NCCP-246T. Genome relatedness indexes revealed that the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between arapr2T and its closest relative (S. canadense CR11T) were 92.97 % and 52.00 %, respectively; for S. pakistanensis NCCP-246T, the ANI and dDDH values were 82.46 and 27.6%, respectively. The genomic DNA of strain arapr2T was 6.02 Mbp long, had a DNA G+C content of 40.4 mol% and had 5504 protein-coding genes. The results obtained in this study suggests that strain arapr2T (CIP 111872T=LMG 31848T) represents a new species for which the name Sphingobacterium prati sp. nov. is proposed. Due to the fact that this strain has been isolated using wheat straw as carbon source, this novel bacterial strain represents a promising biotechnological tool for the fractionation of lignocellulosic biomass in the context of biorefinery development.


Assuntos
Filogenia , Microbiologia do Solo , Sphingobacterium , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , França , Lignina , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação
13.
J Biotechnol ; 339: 81-92, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34364925

RESUMO

Pigments are compounds with highly diverse structures and wide uses, which production is increasing worldwide. An eco-friendly method of bioproduction is to use the ability of some microorganisms to ferment on renewable carbon sources. Wheat bran (WB) is a cheap and abundant lignocellulosic co-product of low recalcitrance to biological conversion. Microbial candidates with theoretical ability to degrade WB were first preselected using specific databases. The microorganisms were Ashbya gossypii (producing riboflavin), Chitinophaga pinensis (producing flexirubin), Chromobacterium vaccinii (violacein) and Gordonia alkanivorans (carotenoids). Growth was shown for each on minimal salt medium supplemented with WB at 5 g.L-1. Activities of the main enzymes consuming WB were measured, showing leucine amino-peptidase (up to 8.45 IU. mL-1) and ß-glucosidase activities (none to 6.44 IU. mL-1). This was coupled to a FTIR (Fourier Transform Infra-Red) study of the WB residues that showed main degradation of the WB protein fraction for C. pinensis, C. vaccinii and G. alkanivorans. Production of the pigments on WB was assessed for all the strains except Ashbya, with values of production reaching up to 1.47 mg.L-1. The polyphasic approach used in this study led to a proof of concept of pigment production from WB as a cheap carbon source.


Assuntos
Actinobacteria , Fibras na Dieta , Bacteroidetes , Chromobacterium
14.
Environ Microbiol ; 23(8): 4450-4465, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34121306

RESUMO

Chloromethane (CH3 Cl) is the most abundant halogenated volatile organic compound in the atmosphere and contributes to stratospheric ozone depletion. CH3 Cl has mainly natural sources such as emissions from vegetation. In particular, ferns have been recognized as strong emitters. Mitigation of CH3 Cl to the atmosphere by methylotrophic bacteria, a global sink for this compound, is likely underestimated and remains poorly characterized. We identified and characterized CH3 Cl-degrading bacteria associated with intact and living tree fern plants of the species Cyathea australis by stable isotope probing (SIP) with 13 C-labelled CH3 Cl combined with metagenomics. Metagenome-assembled genomes (MAGs) related to Methylobacterium and Friedmanniella were identified as being involved in the degradation of CH3 Cl in the phyllosphere, i.e., the aerial parts of the tree fern, while a MAG related to Sorangium was linked to CH3 Cl degradation in the fern rhizosphere. The only known metabolic pathway for CH3 Cl degradation, via a methyltransferase system including the gene cmuA, was not detected in metagenomes or MAGs identified by SIP. Hence, a yet uncharacterized methylotrophic cmuA-independent pathway may drive CH3 Cl degradation in the investigated tree ferns.


Assuntos
Gleiquênias , Cloreto de Metila , Atmosfera , Bactérias/genética , Metiltransferases
15.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054704

RESUMO

The whole genome of Saccharibacillus sp. strain WB 17, a bacterial strain isolated from wheat phyllosphere, has been sequenced. This microorganism is equipped with several carbohydrate-active enzymes, which would explain its ability to fractionate lignocellulose.

16.
Sci Rep ; 9(1): 12799, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488860

RESUMO

In cloud water, microorganisms are exposed to very strong stresses especially related to the presence of reactive oxygen species including H2O2 and radicals, which are the driving force of cloud chemistry. In order to understand how the bacterium Pseudomonas graminis isolated from cloud water respond to this oxidative stress, it was incubated in microcosms containing a synthetic solution of cloud water in the presence or in the absence of H2O2. P. graminis metabolome was examined by LC-MS and NMR after 50 min and after 24 hours of incubation. After 50 min, the cells were metabolizing H2O2 while this compound was still present in the medium, and it was completely biodegraded after 24 hours. Cells exposed to H2O2 had a distinct metabolome as compared to unexposed cells, revealing modulations of certain metabolic pathways in response to oxidative stress. These data indicated that the regulations observed mainly involved carbohydrate, glutathione, energy, lipid, peptides and amino-acids metabolisms. When cells had detoxified H2O2 from the medium, their metabolome was not distinguishable anymore from unexposed cells, highlighting the capacity of resilience of this bacterium. This work illustrates the interactions existing between the cloud microbial metabolome and cloud chemistry.


Assuntos
Microbiologia do Ar , Peróxido de Hidrogênio/metabolismo , Pseudomonas/metabolismo , Trifosfato de Adenosina/metabolismo , Umidade , Espectrometria de Massas , Metaboloma , Estresse Oxidativo
17.
Curr Issues Mol Biol ; 33: 149-172, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166190

RESUMO

Chloromethane is a halogenated volatile organic compound, produced in large quantities by terrestrial vegetation. After its release to the troposphere and transport to the stratosphere, its photolysis contributes to the degradation of stratospheric ozone. A better knowledge of chloromethane sources (production) and sinks (degradation) is a prerequisite to estimate its atmospheric budget in the context of global warming. The degradation of chloromethane by methylotrophic communities in terrestrial environments is a major underestimated chloromethane sink. Methylotrophs isolated from soils, marine environments and more recently from the phyllosphere have been grown under laboratory conditions using chloromethane as the sole carbon source. In addition to anaerobes that degrade chloromethane, the majority of cultivated strains were isolated in aerobiosis for their ability to use chloromethane as sole carbon and energy source. Among those, the Proteobacterium Methylobacterium (recently reclassified as Methylorubrum) harbours the only characterisized 'chloromethane utilization' (cmu) pathway, so far. This pathway is not representative of chloromethane-utilizing populations in the environment as cmu genes are rare in metagenomes. Recently, combined 'omics' biological approaches with chloromethane carbon and hydrogen stable isotope fractionation measurements in microcosms, indicated that microorganisms in soils and the phyllosphere (plant aerial parts) represent major sinks of chloromethane in contrast to more recently recognized microbe-inhabited environments, such as clouds. Cultivated chloromethane-degraders lacking the cmu genes display a singular isotope fractionation signature of chloromethane. Moreover, 13CH3Cl labelling of active methylotrophic communities by stable isotope probing in soils identify taxa that differ from the taxa known for chloromethane degradation. These observations suggest that new biomarkers for detecting active microbial chloromethane-utilizers in the environment are needed to assess the contribution of microorganisms to the global chloromethane cycle.


Assuntos
Metabolismo Energético/fisiologia , Metanol/metabolismo , Cloreto de Metila/metabolismo , Proteobactérias/classificação , Proteobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Methylobacterium/classificação , Methylobacterium/metabolismo , Methylophilaceae/classificação , Methylophilaceae/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Microbiologia do Solo
18.
Sci Rep ; 9(1): 4383, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867542

RESUMO

Clouds constitute the uppermost layer of the biosphere. They host diverse communities whose functioning remains obscure, although biological activity potentially participates to atmospheric chemical and physical processes. In order to gain information on the metabolic functioning of microbial communities in clouds, we conducted coordinated metagenomics/metatranscriptomics profiling of cloud water microbial communities. Samples were collected from a high altitude atmospheric station in France and examined for biological content after untargeted amplification of nucleic acids. Living microorganisms, essentially bacteria, maintained transcriptional and translational activities and expressed many known complementary physiological responses intended to fight oxidants, osmotic variations and cold. These included activities of oxidant detoxification and regulation, synthesis of osmoprotectants/cryoprotectants, modifications of membranes, iron uptake. Consistently these energy-demanding processes were fueled by central metabolic routes involved in oxidative stress response and redox homeostasis management, such as pentose phosphate and glyoxylate pathways. Elevated binding and transmembrane ion transports demonstrated important interactions between cells and their cloud droplet chemical environments. In addition, polysaccharides, potentially beneficial for survival like exopolysaccharides, biosurfactants and adhesins, were synthesized. Our results support a biological influence on cloud physical and chemical processes, acting notably on the oxidant capacity, iron speciation and availability, amino-acids distribution and carbon and nitrogen fates.


Assuntos
Atmosfera/análise , Metagenômica/métodos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo , Nitrogênio/metabolismo , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Via de Pentose Fosfato/genética , Via de Pentose Fosfato/fisiologia , Temperatura
19.
Front Microbiol ; 9: 2053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386304

RESUMO

Common herbicides such as metolachlor (MET), and their transformation products, are frequently detected in groundwater worldwide. Little is known about the response of groundwater bacterial communities to herbicide exposure, and its potential use for ecotoxicological assessment. The response of bacterial communities exposed to different levels of MET from the Ariège alluvial aquifer (Southwest of France) was investigated in situ and in laboratory experiments. Variations in both chemistry and bacterial communities were observed in groundwater, but T-RFLP analysis did not allow to uncover a pesticide-specific effect on endogenous bacterial communities. To circumvent issues of hydrogeochemical and seasonal variations in situ, groundwater samples from two monitoring wells of the Ariège aquifer with contrasting records of pesticide contamination were exposed to different levels of MET in laboratory experiments. The standard Microtox® acute toxicity assay did not indicate toxic effects of MET, even at 5 mg L-1 (i.e., 1000-fold higher than in contaminated groundwater). Analysis of MET transformation products and compound-specific isotope analysis (CSIA) in laboratory experiments demonstrated MET biodegradation but did not correlate with MET exposure. High-throughput sequencing analysis (Illumina MiSeq) of bacterial communities based on amplicons of the 16S rRNA gene revealed that bacterial community differed mainly by groundwater origin rather than by its response to MET exposure. OTUs correlating with MET addition ranged between 0.4 to 3.6% of the total. Predictive analysis of bacterial functions impacted by pesticides using PICRUSt suggested only minor changes in bacterial functions with increasing MET exposure. Taken together, results highlight MET biodegradation in groundwater, and the potential use of bacterial communities as sensitive indicators of herbicide contamination in aquifers. Although detected effects of MET on groundwater bacterial communities were modest, this study illustrates the potential of integrating DNA- and isotopic analysis-based approaches to improve ecotoxicological assessment of pesticide-contaminated aquifers. GRAPHICAL ABSTRACTAn integrative approach was develop to investigate in situ and in laboratory experiments the response of bacterial communities exposed to different levels of MET from the Ariége alluvial aquifer (Southwest of France).

20.
ISME J ; 12(11): 2681-2693, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29991765

RESUMO

Halogenated volatile organic compounds (VOCs) emitted by terrestrial ecosystems, such as chloromethane (CH3Cl), have pronounced effects on troposphere and stratosphere chemistry and climate. The magnitude of the global CH3Cl sink is uncertain since it involves a largely uncharacterized microbial sink. CH3Cl represents a growth substrate for some specialized methylotrophs, while methanol (CH3OH), formed in much larger amounts in terrestrial environments, may be more widely used by such microorganisms. Direct measurements of CH3Cl degradation rates in two field campaigns and in microcosms allowed the identification of top soil horizons (i.e., organic plus mineral A horizon) as the major biotic sink in a deciduous forest. Metabolically active members of Alphaproteobacteria and Actinobacteria were identified by taxonomic and functional gene biomarkers following stable isotope labeling (SIP) of microcosms with CH3Cl and CH3OH, added alone or together as the [13C]-isotopologue. Well-studied reference CH3Cl degraders, such as Methylobacterium extorquens CM4, were not involved in the sink activity of the studied soil. Nonetheless, only sequences of the cmuA chloromethane dehalogenase gene highly similar to those of known strains were detected, suggesting the relevance of horizontal gene transfer for CH3Cl degradation in forest soil. Further, CH3Cl consumption rate increased in the presence of CH3OH. Members of Alphaproteobacteria and Actinobacteria were also 13C-labeled upon [13C]-CH3OH amendment. These findings suggest that key bacterial CH3Cl degraders in forest soil benefit from CH3OH as an alternative substrate. For soil CH3Cl-utilizing methylotrophs, utilization of several one-carbon compounds may represent a competitive advantage over heterotrophs that cannot utilize one-carbon compounds.


Assuntos
Actinobacteria/metabolismo , Alphaproteobacteria/metabolismo , Metanol/metabolismo , Cloreto de Metila/metabolismo , Microbiologia do Solo , Actinobacteria/genética , Alphaproteobacteria/genética , Florestas , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA