Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873448

RESUMO

Treatments for congenital and acquired craniofacial (CF) bone abnormalities are limited and expensive. Current reconstructive methods include surgical correction of injuries, short-term bone stabilization, and long-term use of bone grafting solutions, including implantation of (i) allografts which are prone to implant failure or infection, (ii) autografts which are limited in supply. Current bone regenerative approaches have consistently relied on BMP-2 application with or without addition of stem cells. BMP2 treatment can lead to severe bony overgrowth or uncontrolled inflammation, which can accelerate further bone loss. Bone marrow-derived mesenchymal stem cell-based treatments, which do not have the side effects of BMP2, are not currently FDA approved, and are time and resource intensive. There is a critical need for novel bone regenerative therapies to treat CF bone loss that have minimal side effects, are easily available, and are affordable. In this study we investigated novel bone regenerative therapies downstream of JAGGED1 (JAG1). We previously demonstrated that JAG1 induces murine cranial neural crest (CNC) cells towards osteoblast commitment via a NOTCH non-canonical pathway involving JAK2-STAT5 (1) and that JAG1 delivery with CNC cells elicits bone regeneration in vivo. In this study, we hypothesized that delivery of JAG1 and induction of its downstream NOTCH non-canonical signaling in pediatric human osteoblasts constitute an effective bone regenerative treatment in an in vivo murine bone loss model of a critically-sized cranial defect. Using this CF defect model in vivo, we delivered JAG1 with pediatric human bone-derived osteoblast-like (HBO) cells to demonstrate the osteo-inductive properties of JAG1 in human cells and in vitro we utilized the HBO cells to identify the downstream non-canonical JAG1 signaling intermediates as effective bone regenerative treatments. In vitro, we identified an important mechanism by which JAG1 induces pediatric osteoblast commitment and bone formation involving the phosphorylation of p70 S6K. This discovery enables potential new treatment avenues involving the delivery of tethered JAG1 and the downstream activators of p70 S6K as powerful bone regenerative therapies in pediatric CF bone loss.

2.
Arthritis Res Ther ; 25(1): 180, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749630

RESUMO

BACKGROUND: Dimerization of the myeloid differentiation primary response 88 protein (MyD88) plays a pivotal role in the exacerbated response to innate immunity-dependent signaling in rheumatoid arthritis (RA). ST2825 is a highly specific inhibitor of MyD88 dimerization, previously shown to inhibit the pro-inflammatory gene expression in peripheral blood mononuclear cells from RA patients (RA PBMC). In this study, we elucidated the effect of disrupting MyD88 dimerization by ST2825 on the pathological properties of synovial fibroblasts from RA patients (RA SFs). METHODS: RA SFs were treated with varying concentrations of ST2825 in the presence or absence of bacterial lipopolysaccharides (LPS) to activate innate immunity-dependent TLR signaling. The DNA content of the RA SFs was quantified by imaging cytometry to investigate the effect of ST2825 on different phases of the cell cycle and apoptosis. RNA-seq was used to assess the global response of the RA SF toward ST2825. The invasiveness of RA SFs in Matrigel matrices was measured in organoid cultures. SFs from osteoarthritis (OA SFs) patients and healthy dermal fibroblasts were used as controls. RESULTS: ST2825 reduced the proliferation of SFs by arresting the cells in the G0/G1 phase of the cell cycle. In support of this finding, transcriptomic analysis by RNA-seq showed that ST2825 may have induced cell cycle arrest by primarily inhibiting the expression of critical cell cycle regulators Cyclin E2 and members of the E2F family transcription factors. Concurrently, ST2825 also downregulated the genes encoding for pain, inflammation, and joint catabolism mediators while upregulating the genes required for the translocation of nuclear proteins into the mitochondria and members of the mitochondrial respiratory complex 1. Finally, we demonstrated that ST2825 inhibited the invasiveness of RA SFs, by showing decreased migration of LPS-treated RA SFs in spheroid cultures. CONCLUSIONS: The pathological properties of the RA SFs, in terms of their aberrant proliferation, increased invasiveness, upregulation of pain and inflammation mediators, and disruption of mitochondrial homeostasis, were attenuated by ST2825 treatment. Taken together with the previously reported anti-inflammatory effects of ST2825 in RA PBMC, this study strongly suggests that targeting MyD88 dimerization could mitigate both systemic and synovial pathologies in a variety of inflammatory arthritic diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Humanos , Dimerização , Leucócitos Mononucleares , Fator 88 de Diferenciação Mieloide/genética , Lipopolissacarídeos , Artrite Reumatoide/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal , Fibroblastos , Osteoartrite/tratamento farmacológico
3.
Elife ; 122023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36715686

RESUMO

Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine. The iPSCs exhibit a preference for lineage differentiation to the donor cell type indicating the existence of memory of origin. Although the intrinsic effect of the donor cell type on differentiation of iPSCs is well recognized, whether disease-specific factors of donor cells influence the differentiation capacity of iPSC remains unknown. Using viral based reprogramming, we demonstrated the generation of iPSCs from chondrocytes isolated from healthy (AC-iPSCs) and osteoarthritis cartilage (OA-iPSCs). These reprogrammed cells acquired markers of pluripotency and differentiated into uncommitted mesenchymal-like progenitors. Interestingly, AC-iPSCs exhibited enhanced chondrogenic potential as compared OA-iPSCs and showed increased expression of chondrogenic genes. Pan-transcriptome analysis showed that chondrocytes derived from AC-iPSCs were enriched in molecular pathways related to energy metabolism and epigenetic regulation, together with distinct expression signature that distinguishes them from OA-iPSCs. Our molecular tracing data demonstrated that dysregulation of epigenetic and metabolic factors seen in OA chondrocytes relative to healthy chondrocytes persisted following iPSC reprogramming and differentiation toward mesenchymal progenitors. Our results suggest that the epigenetic and metabolic memory of disease may predispose OA-iPSCs for their reduced chondrogenic differentiation and thus regulation at epigenetic and metabolic level may be an effective strategy for controlling the chondrogenic potential of iPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteoartrite , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Epigênese Genética , Cartilagem , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Osteoartrite/genética , Osteoartrite/metabolismo
4.
iScience ; 25(12): 105548, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465135

RESUMO

Arthritic diseases have attracted enormous scientific interest because of increased worldwide prevalence and represent a significant socioeconomic burden. Osteoarthritis (OA) is the most prevalent form of arthritis. It is a disorder of the diarthrodial joints, characterized by degeneration and loss of articular cartilage associated with adjacent subchondral bone changes. Chronic and unresolving inflammation has been identified as a critical factor driving joint degeneration and pain in OA. Despite numerous attempts at therapeutic intervention, no effective disease-modifying agents targeting OA inflammation are available to the patients. Inflammasomes are protein complexes known to play a critical role in the inflammatory pathology of several diseases, and their roles in OA pathogenesis have become evident over the last decade. In this sense, it is relevant to evaluate the vital role of inflammasomes as potential modulators of pathogenic features in OA. This review will provide an overview and perspectives on why understanding inflammasome activation is critical for identifying effective OA therapies. We elaborate on the contribution of extracellular mediators from the circulatory system and synovial fluid as well as intracellular activators within the synovial fibroblasts and articular chondrocytes toward invoking the inflammasome in OA. We further discuss the merits of emerging inflammasome targeting therapies and speculate on the potential strategies for inflammasome blockade for OA therapy.

5.
Front Immunol ; 13: 789349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529852

RESUMO

SOX4 belongs to the group C of the SOX transcription factor family. It is a critical mediator of tumor necrosis factor alpha (TNF)-induced transformation of fibroblast-like s-ynoviocytes (FLS) in arthritis. In this study we investigated the genome wide association between the DNA binding and transcriptional activities of SOX4 and the NF-kappaB signaling transcription factor RELA/p65 downstream of TNF signaling. We used ChIP-seq assays in mouse FLS to compare the global DNA binding profiles of SOX4 and RELA. RNA-seq of TNF-induced wildtype and SoxC-knockout FLS was used to identify the SOX4-dependent and independent aspects of the TNF-regulated transcriptome. We found that SOX4 and RELA physically interact with each other on the chromatin. Interestingly, ChIP-seq assays revealed that 70.4% of SOX4 peak summits were within 50bp of the RELA peak summits suggesting that both proteins bind in close-proximity on regulatory sequences, enabling them to co-operatively regulate gene expression. By integrating the ChIP-seq results with RNA-seq from SoxC-knockout FLS we identified a set of TNF-responsive genes that are targets of the RELA-SOX4 transcriptional complex. These TNF-responsive and RELA-SOX4-depenedent genes included inflammation mediators, histone remodeling enzymes and components of the AP-1 signaling pathway. We also identified an autoregulatory mode of SoxC gene expression that involves a TNF-mediated switch from RELA binding to SOX4 binding in the 3' UTR of Sox4 and Sox11 genes. In conclusion, our results show that SOX4 and RELA together orchestrate a multimodal regulation of gene expression downstream of TNF signaling. Their interdependent activities play a pivotal role in the transformation of FLS in arthritis and in the inflammatory pathology of diverse tissues where RELA and SOX4 are co-expressed.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Artrite Reumatoide/metabolismo , DNA/metabolismo , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Camundongos , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
ACR Open Rheumatol ; 3(6): 359-370, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33931959

RESUMO

OBJECTIVES: Fibroblast-like synoviocytes (FLS) and articular chondrocytes (AC) derive from a common pool of embryonic precursor cells. They are currently believed to engage in largely distinct differentiation programs to build synovium and articular cartilage and maintain healthy tissues throughout life. We tested this hypothesis by deeply characterizing and comparing their transcriptomic attributes. METHODS: We profiled the transcriptomes of freshly isolated AC, synovium, primary FLS, and dermal fibroblasts from healthy adult humans using bulk RNA sequencing assays and downloaded published single-cell RNA sequencing data from freshly isolated human FLS. We integrated all data to define cell-specific signatures and validated findings with quantitative reverse transcription PCR of human samples and RNA hybridization of mouse joint sections. RESULTS: We identified 212 AC and 168 FLS markers on the basis of exclusive or enriched expression in either cell and 294 AC/FLS markers on the basis of similar expression in both cells. AC markers included joint-specific and pan-cartilaginous genes. FLS and AC/FLS markers featured 37 and 55 joint-specific genes, respectively, and 131 and 239 pan-fibroblastic genes, respectively. These signatures included many previously unrecognized markers with potentially important joint-specific roles. AC/FLS markers overlapped in their expression patterns among all FLS and AC subpopulations, suggesting that they fulfill joint-specific properties in all, rather than in discrete, AC and FLS subpopulations. CONCLUSION: This study broadens knowledge and identifies a prominent overlap of the human adult AC and FLS transcriptomic signatures. It also provides data resources to help further decipher mechanisms underlying joint homeostasis and degeneration and to improve the quality control of tissues engineered for regenerative treatments.

7.
Front Pharmacol ; 12: 800220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002734

RESUMO

MyD88-dependent intracellular signalling cascades and subsequently NF-kappaB-mediated transcription lead to the dynamic inflammatory processes underlying the pathogenesis of rheumatoid arthritis (RA) and related autoimmune diseases. This study aimed to identify the effect of the MyD88 dimerization inhibitor, ST2825, as a modulator of pathogenic gene expression signatures and systemic inflammation in disease-modifying antirheumatic drugs (DMARDs)-naïve RA patients. We analyzed bulk RNA-seq from peripheral blood mononuclear cells (PBMC) in DMARDs-naïve RA patients after stimulation with LPS and IL-1ß. The transcriptional profiles of ST2825-treated PBMC were analyzed to identify its therapeutic potential. Ingenuity Pathway Analysis was implemented to identify downregulated pathogenic processes. Our analysis revealed 631 differentially expressed genes between DMARDs-naïve RA patients before and after ST2825 treatment. ST2825-treated RA PBMC exhibited a gene expression signature similar to that of healthy controls PBMC by downregulating the expression of proinflammatory cytokines, chemokines and matrix metalloproteases. In addition, B cell receptor, IL-17 and IL-15 signalling were critically downregulated pathways by ST2825. Furthermore, we identified eight genes (MMP9, CXCL9, MZB1, FUT7, TGM2, IGLV1-51, LINC01010, and CDK1) involved in pathogenic processes that ST2825 can potentially inhibit in distinct cell types within the RA synovium. Overall, our findings indicate that targeting MyD88 effectively downregulates systemic inflammatory mediators and modulates the pathogenic processes in PBMC from DMARDs-naïve RA patients. ST2825 could also potentially inhibit upregulated genes in the RA synovium, preventing synovitis and joint degeneration.

8.
Bone ; 143: 115657, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32980561

RESUMO

Craniofacial bone loss is a complex clinical problem with limited regenerative solutions. Currently, BMP2 is used as a bone-regenerative therapy in adults, but in pediatric cases of bone loss, it is not FDA-approved due to concerns of life-threatening inflammation and cancer. Development of a bone-regenerative therapy for children will transform our ability to reduce the morbidity associated with current autologous bone grafting techniques. We discovered that JAGGED1 (JAG1) induces cranial neural crest (CNC) cell osteoblast commitment during craniofacial intramembranous ossification, suggesting that exogenous JAG1 delivery is a potential craniofacial bone-regenerative approach. In this study, we found that JAG1 delivery using synthetic hydrogels containing O9-1 cells, a CNC cell line, into critical-sized calvarial defects in C57BL/6 mice provided robust bone-regeneration. Since JAG1 signals through canonical (Hes1/Hey1) and non-canonical (JAK2) NOTCH pathways in CNC cells, we used RNAseq to analyze transcriptional pathways activated in CNC cells treated with JAG1 ± DAPT, a NOTCH-canonical pathway inhibitor. JAG1 upregulated expression of multiple NOTCH canonical pathway genes (Hes1), which were downregulated in the presence of DAPT. JAG1 also induced bone chemokines (Cxcl1), regulators of cytoskeletal organization and cell migration (Rhou), signaling targets (STAT5), promoters of early osteoblast cell proliferation (Prl2c2, Smurf1 and Esrra), and, inhibitors of osteoclasts (Id1). In the presence of DAPT, expression levels of Hes1 and Cxcl1 were decreased, whereas, Prl2c2, Smurf1, Esrra, Rhou and Id1 remain elevated, suggesting that JAG1 induces osteoblast proliferation through these non-canonical genes. Pathway analysis of JAG1 + DAPT-treated CNC cells revealed significant upregulation of multiple non-canonical pathways, including the cell cycle, tubulin pathway, regulators of Runx2 initiation and phosphorylation of STAT5 pathway. In total, our data show that JAG1 upregulates multiple pathways involved in osteogenesis, independent of the NOTCH canonical pathway. Moreover, our findings suggest that JAG1 delivery using a synthetic hydrogel, is a bone-regenerative approach with powerful translational potential.


Assuntos
Crista Neural , Receptores Notch , Adulto , Animais , Regeneração Óssea , Criança , Humanos , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/metabolismo , Osteoblastos/metabolismo , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligases , Proteínas rho de Ligação ao GTP
9.
Sci Rep ; 10(1): 21350, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288783

RESUMO

Syntaxins are a family of membrane-anchored SNARE proteins that are essential components required for membrane fusion in eukaryotic intracellular membrane trafficking pathways. Syntaxins contain an N-terminal regulatory domain, termed the Habc domain that is not highly conserved at the primary sequence level but folds into a three-helix bundle that is structurally conserved among family members. The syntaxin Habc domain has previously been found to be structurally very similar to the GAT domain present in GGA family members and related proteins that are otherwise completely unrelated to syntaxins. Because the GAT domain has been found to be a ubiquitin binding domain we hypothesized that the Habc domain of syntaxins may also bind to ubiquitin. Here, we report that the Habc domain of syntaxin 3 (Stx3) indeed binds to monomeric ubiquitin with low affinity. This domain binds efficiently to K63-linked poly-ubiquitin chains within a narrow range of chain lengths but not to K48-linked poly-ubiquitin chains. Other syntaxin family members also bind to K63-linked poly-ubiquitin chains but with different chain length specificities. Molecular modeling suggests that residues of the GGA3-GAT domain known to be important for ionic and hydrophobic interactions with ubiquitin may have equivalent, conserved residues within the Habc domain of Stx3. We conclude that the syntaxin Habc domain and the GAT domain are both structurally and functionally related, and likely share a common ancestry despite sequence divergence. Binding of Ubiquitin to the Habc domain may regulate the function of syntaxins in membrane fusion or may suggest additional functions of this protein family.


Assuntos
Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/metabolismo , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA/métodos , Humanos , Modelos Moleculares , Anotação de Sequência Molecular , Poliubiquitina/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Ressonância de Plasmônio de Superfície
10.
Sci Rep ; 10(1): 20297, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219307

RESUMO

Fibroblast-like synoviocytes (FLS) play a critical role in the pathogenesis of rheumatoid arthritis (RA). Chronic inflammation induces transcriptomic and epigenetic modifications that imparts a persistent catabolic phenotype to the FLS, despite their dissociation from the inflammatory environment. We analyzed high throughput gene expression and chromatin accessibility data from human and mouse FLS from our and other studies available on public repositories, with the goal of identifying the persistently reprogrammed signaling pathways driven by chronic inflammation. We found that the gene expression changes induced by short-term tumor necrosis factor-alpha (TNF) treatment were largely sustained in the FLS exposed to chronic inflammation. These changes that included both activation and repression of gene expression, were accompanied by the remodeling of chromatin accessibility. The sustained activated genes (SAGs) included established pro-inflammatory signaling components known to act at multiple levels of NF-kappaB, STAT and AP-1 signaling cascades. Interestingly, the sustained repressed genes (SRGs) included critical mediators and targets of the BMP signaling pathway. We thus identified sustained repression of BMP signaling as a unique constituent of the long-term inflammatory memory induced by chronic inflammation. We postulate that simultaneous targeting of these activated and repressed signaling pathways may be necessary to combat RA persistence.


Assuntos
Artrite Reumatoide/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Artrite Reumatoide/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Conjuntos de Dados como Assunto , Epigênese Genética/imunologia , Fibroblastos , Humanos , Camundongos , Cultura Primária de Células , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Membrana Sinovial/imunologia , Sinoviócitos/imunologia , Sinoviócitos/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/genética
11.
Biochem Pharmacol ; 165: 145-151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878552

RESUMO

Inflammation in the synovium is known to mediate joint destruction in several forms of arthritis. Fibroblast-like synoviocytes (FLS) are cells that reside in the synovial lining of joints and are known to be key contributors to inflammation associated with arthritis. FLS are a major source of inflammatory cytokines and catabolic enzymes that promote joint degeneration. We now know that there exists a direct correlation between the signaling pathways that are activated by the pro-inflammatory molecules produced by the FLS, and the severity of joint degeneration in arthritis. Research focused on understanding the signaling pathways that are activated by these pro-inflammatory molecules has led to major advancements in the understanding of the joint pathology in arthritis. Transcription factors (TFs) that act as downstream mediators of the pro-inflammatory signaling cascades in various cell types have been reported to play an important role in inducing the deleterious transformation of the FLS. Interestingly, recent studies have started uncovering that several TFs that were previously reported to play role in embryonic development and cancer, but not known to have pronounced roles in tissue inflammation, can actually play crucial roles in the regulation of the pathological properties of the FLS. In this review, we will discuss reports that have been able to impart novel arthritogenic roles to TFs that are specialized in embryonic development. We also discuss the therapeutic potential of targeting these newly identified regulators of FLS transformation in the treatment of arthritis.


Assuntos
Artrite Reumatoide/patologia , Osteoartrite/patologia , Sinoviócitos/patologia , Fatores de Transcrição/fisiologia , Animais , Artrite Reumatoide/tratamento farmacológico , Fibroblastos/patologia , Humanos , Osteoartrite/tratamento farmacológico , Transdução de Sinais/fisiologia , Fatores de Transcrição/antagonistas & inibidores
12.
Bio Protoc ; 8(3)2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29564371

RESUMO

The uptake and trafficking of cell surface receptors can be monitored by a technique called 'antibody-feeding' which uses an externally applied antibody to label the receptor on the surface of cultured, live cells. Here, we adapt the traditional antibody-feeding experiment to polarized epithelial cells (Madin-Darby Canine Kidney) grown on permeable Transwell supports. By adding two tandem extracellular Myc epitope tags to the C-terminus of the SNARE protein syntaxin 3 (Stx3), we provided a site where an antibody could bind, allowing us to perform antibody-feeding experiments on cells with distinct apical and basolateral membranes. With this procedure, we observed the endocytosis and intracellular trafficking of Stx3. Specifically, we assessed the internalization rate of Stx3 from the basolateral membrane and observed the ensuing endocytic route in both time and space using immunofluorescence microscopy on cells fixed at different time points. For cell lines that form a polarized monolayer containing distinct apical and basolateral membranes when cultured on permeable supports, e.g., MDCK or Caco-2, this protocol can measure the rate of endocytosis and follow the subsequent trafficking of a target protein from either limiting membrane.

13.
J Biol Chem ; 293(15): 5478-5491, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475951

RESUMO

Syntaxins are a conserved family of SNARE proteins and contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that Stx3 (syntaxin 3) unexpectedly also functions as a nuclear regulator of gene expression. We found that alternative splicing creates a soluble isoform that we termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5 (RAN-binding protein 5), targets to the nucleus, and interacts physically and functionally with several transcription factors, including ETV4 (ETS variant 4) and ATF2 (activating transcription factor 2). Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer versus normal breast tissue. Inhibition of endogenous Stx3S expression alters the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified, suggesting that nuclear signaling is a conserved, novel function common among these membrane-trafficking proteins.


Assuntos
Proteínas E1A de Adenovirus/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , beta Carioferinas/metabolismo , Proteínas E1A de Adenovirus/genética , Animais , Células COS , Células CACO-2 , Núcleo Celular/genética , Chlorocebus aethiops , Cães , Células HEK293 , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Proteínas Qa-SNARE/genética , Solubilidade , beta Carioferinas/genética
14.
Arthritis Rheumatol ; 70(3): 371-382, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193895

RESUMO

OBJECTIVE: Fibroblast-like synoviocytes (FLS) produce key synovial fluid and tissue components to ensure joint integrity under healthy conditions, whereas they become cancer-like and aggressively contribute to joint degeneration in inflammatory arthritis. The aim of this study was to determine whether the SOXC transcription factors SOX4 and SOX11, whose functions are critical in joint development and many cancer types, contribute to FLS activities under normal and inflammatory conditions. METHODS: We inactivated the SOXC genes in FLS from adult mice and studied the effect on joint homeostasis and tumor necrosis factor (TNF)-induced arthritis. We used primary cells and synovial biopsy specimens from arthritis patients to analyze the interactions between inflammatory signals and SOXC proteins. RESULTS: Postnatal inactivation of the SOXC genes had no major effect on joint integrity in otherwise healthy mice. However, it hampered synovial hyperplasia and joint degeneration in transgenic mice expressing human TNF. These effects were explained by the ability of SOX4/11 to amplify the pathogenic impact of TNF on FLS by increasing their survival and migration. SOXC RNA levels were not changed by TNF and other proinflammatory cytokines, but SOXC proteins were strongly stabilized and able to potentiate the TNF-induced up-regulation of genes involved in FLS transformation. Substantiating the relevance of these findings in human disease, SOXC protein levels, but not RNA levels, were significantly higher in inflamed synovium than in noninflamed synovium from arthritis patients. CONCLUSION: SOXC proteins are targets and pivotal mediators of proinflammatory cytokines during FLS transformation in arthritic diseases. Targeting of these proteins could thus improve current strategies to treat arthritic diseases and possibly other inflammatory diseases.


Assuntos
Artrite/metabolismo , Citocinas/metabolismo , Fatores de Transcrição SOXC/metabolismo , Sinoviócitos/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Humanos , Hibridização In Situ , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Mol Biol Cell ; 28(21): 2843-2853, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28814500

RESUMO

Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral-but not the apical-plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion.


Assuntos
Proteínas Qa-SNARE/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Estruturas da Membrana Celular/metabolismo , Polaridade Celular , Cães , Endocitose , Endossomos/metabolismo , Células Epiteliais/metabolismo , Exocitose , Exossomos/metabolismo , Fibroblastos/metabolismo , Humanos , Células Madin Darby de Rim Canino , Fusão de Membrana , Proteínas Qa-SNARE/química , Proteínas SNARE/metabolismo , Ubiquitinação
16.
Semin Cell Dev Biol ; 62: 86-93, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212252

RESUMO

The synovium constitutes the envelope of articular joints and is a critical provider of synovial fluid components and articular cartilage nutrients. Its inflammation is a predominant feature and cause of joint degeneration in diseases as diverse as rheumatoid, psoriatic, juvenile and idiopathic arthritis, and lupus, gout and lyme disease. These inflammatory joint diseases (IJDs) are due to a wide variety of genetic, epigenetic and environmental factors that trigger, promote, and perpetuate joint destabilization. In spite of this variety of causes, IJDs share main pathological features, namely inflammation of the joint synovium (synovitis) and progressive degeneration of articular cartilage. In addition to being a driving force behind the destruction of articular cartilage in IJD, synovitis is also increasingly being recognized as a significant contributor of articular cartilage degeneration in osteoarthritis, a disease primarily due to aging- or trauma-related wear and tear of cartilage surfaces. In view of this important role of the synovium in determining the fate of articular cartilage, this review focuses on its underlying mechanisms in the pathology of IJD. We address the roles of synovial fibroblasts, macrophages and endothelial cells in the maintenance of joint health and in the destruction of articular cartilage integrity during IJD. Molecular mechanisms that have been recently shown to govern the pathological activities of the resident synovial cells are highlighted. Finally, advantages and disadvantages of targeting these new molecular mechanisms for preventing cartilage degeneration due to chronic inflammation are also discussed.


Assuntos
Cartilagem Articular/patologia , Inflamação/patologia , Artropatias/patologia , Articulações/patologia , Membrana Sinovial/patologia , Animais , Humanos , Macrófagos/patologia
17.
Curr Osteoporos Rep ; 14(1): 32-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26830765

RESUMO

The SOXC group of transcription factors, composed of SOX4, SOX11, and SOX12, has evolved to fulfill key functions in cell fate determination. Expressed in many types of progenitor/stem cells, including skeletal progenitors, SOXC proteins potentiate pathways critical for cell survival and differentiation. As skeletogenesis unfolds, SOXC proteins ensure cartilage primordia delineation by amplifying canonical WNT signaling and antagonizing the chondrogenic action of SOX9 in perichondrium and presumptive articular joint cells. They then ensure skeletal elongation by inducing growth plate formation via enabling non-canonical WNT signaling. Human studies have associated SOX4 with bone mineral density and fracture risk in osteoporotic patients, and SOX11 with Coffin-Siris, a syndrome that includes skeletal dysmorphism. Meanwhile, in vitro and mouse studies have suggested important cell-autonomous roles for SOXC proteins in osteoblastogenesis. We here review current knowledge and gaps in understanding of SOXC protein functions, with an emphasis on the skeleton and possible links to osteoporosis.


Assuntos
Desenvolvimento Ósseo/genética , Condrogênese/genética , Fatores de Transcrição SOXC/genética , Anormalidades Múltiplas/genética , Animais , Densidade Óssea/genética , Diferenciação Celular/genética , Face/anormalidades , Deformidades Congênitas da Mão/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Micrognatismo/genética , Pescoço/anormalidades , Osteoblastos , Fraturas por Osteoporose/genética , Fatores de Transcrição SOX9/genética , Células-Tronco , Via de Sinalização Wnt/genética
19.
Nucleic Acids Res ; 43(11): 5394-408, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25940622

RESUMO

Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the --350/-50-kb region 5' of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at -250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms.


Assuntos
Condrócitos/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição SOX9/genética , Ativação Transcricional , Animais , Células COS , Displasia Campomélica/genética , Linhagem da Célula , Células Cultivadas , Chlorocebus aethiops , Condrócitos/citologia , Aberrações Cromossômicas , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXD
20.
J Bone Miner Res ; 30(9): 1560-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25761772

RESUMO

Growth plates are specialized cartilage structures that ensure the elongation of most skeletal primordia during vertebrate development. They are made by chondrocytes that proliferate in longitudinal columns and then progress in a staggered manner towards prehypertrophic, hypertrophic and terminal maturation. Complex molecular networks control the formation and activity of growth plates, but remain incompletely understood. We investigated here the importance of the SoxC genes, which encode the SOX4, SOX11 and SOX12 transcription factors, in growth plates. We show that the three genes are expressed robustly in perichondrocytes and weakly in growth plate chondrocytes. SoxC(Prx1Cre) mice, which deleted SoxC genes in limb bud skeletogenic mesenchyme, were born with tiny appendicular cartilage primordia because of failure to form growth plates. In contrast, SoxC(Col2Cre) and SoxC(ATC) mice, which deleted SoxC genes primarily in chondrocytes, were born with mild dwarfism and fair growth plates. Chondrocytes in the latter mutants matured normally, but formed irregular columns, proliferated slowly and died ectopically. Asymmetric distribution of VANGL2 was defective in both SoxC(Prx1Cre) and SoxC(ATC) chondrocytes, indicating impairment of planar cell polarity, a noncanonical WNT signaling pathway that controls growth plate chondrocyte alignment, proliferation and survival. Accordingly, SoxC genes were necessary in perichondrocytes for expression of Wnt5a, which encodes a noncanonical WNT ligand required for growth plate formation, and in chondrocytes and perichondrocytes for expression of Fzd3 and Csnk1e, which encode a WNT receptor and casein kinase-1 subunit mediating planar cell polarity, respectively. Reflecting the differential strengths of the SOXC protein transactivation domains, SOX11 was more powerful than SOX4, and SOX12 interfered with the activity of SOX4 and SOX11. Altogether, these findings provide novel insights into the molecular regulation of skeletal growth by proposing that SOXC proteins act cell- and non-cell-autonomously in perichondrocytes and chondrocytes to establish noncanonical WNT signaling crosstalk essential for growth plate induction and control.


Assuntos
Cartilagem/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/metabolismo , Fatores de Transcrição SOXC/metabolismo , Via de Sinalização Wnt , Células 3T3 , Alelos , Animais , Células COS , Cartilagem Articular/embriologia , Diferenciação Celular , Proliferação de Células , Chlorocebus aethiops , Condrócitos/citologia , Feminino , Ligantes , Camundongos , Mutação , Ativação Transcricional , Proteínas Wnt/metabolismo , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA