Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Polym Au ; 1(3): 165-174, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36855655

RESUMO

We model bond formation and dissociation processes in thermosetting polymer networks from molecular dynamics simulations. For this, a coarsened molecular mechanics model is derived from quantum calculations to provide effective interaction potentials that enable million-atoms scale simulations. The importance of bond (re)organization is demonstrated for (i) simulating epoxy resin formation-for which our approach leads to realistic network models which can now account for degrees of curing up to 98%. Moreover, (ii) we elucidate the competition of bond dissociation and bond reformation during plastic deformation and fracture. On this basis, we rationalize the molecular mechanisms that account for the irreversible nature of damaging epoxy polymers by mechanical load.

2.
ACS Nano ; 15(1): 362-376, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33231422

RESUMO

Silver nanowire (AgNW) networks show excellent optical, electrical, and mechanical properties, which make them ideal candidates for transparent electrodes in flexible and stretchable devices. Various coating strategies and testing setups have been developed to further improve their stretchability and to evaluate their performance. Still, a comprehensive microscopic understanding of the relationship between mechanical and electrical failure is missing. In this work, the fundamental deformation modes of five-fold twinned AgNWs in anisotropic networks are studied by large-scale SEM straining tests that are directly correlated with corresponding changes in the resistance. A pronounced effect of the network anisotropy on the electrical performance is observed, which manifests itself in a one order of magnitude lower increase in resistance for networks strained perpendicular to the preferred wire orientation. Using a scale-bridging microscopy approach spanning from NW networks to single NWs to atomic-scale defects, we were able to identify three fundamental deformation modes of NWs, which together can explain this behavior: (i) correlated tensile fracture of NWs, (ii) kink formation due to compression of NWs in transverse direction, and (iii) NW bending caused by the interaction of NWs in the strained network. A key observation is the extreme deformability of AgNWs in compression. Considering HRTEM and MD simulations, this behavior can be attributed to specific defect processes in the five-fold twinned NW structure leading to the formation of NW kinks with grain boundaries combined with V-shaped surface reconstructions, both counteracting NW fracture. The detailed insights from this microscopic study can further improve fabrication and design strategies for transparent NW network electrodes.

3.
Nat Commun ; 11(1): 2367, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398690

RESUMO

The elastic-to-plastic transition during the deformation of a dislocation-free nanoscale volume is accompanied by displacement bursts associated with dislocation nucleation. The dislocations that nucleate during the so-called "pop-in" burst take the form of prismatic dislocation loops (PDLs) and exhibit characteristic burst-like emission and plastic recovery. Here, we report the in-situ transmission electron microscopy (TEM) observation of the initial plasticity ensued by burst-like emission of PDLs on nanoindentation of dislocation-free Au nanowires. The in-situ TEM nanoindentation showed that the nucleation and subsequent cross slip of shear loop(s) are the rate-limiting steps. As the indentation size increases, the cross slip of shear loop becomes favored, resulting in a transition from PDLs to open half-loops to helical dislocations. In the present case of nanoindentation of dislocation-free volumes, the PDLs glide out of the indentation stress field while spreading the plastic zone, as opposed to the underlying assumption of the Nix-Gao model.

4.
Materials (Basel) ; 10(1)2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28772453

RESUMO

Single-crystal Ni-base superalloys, consisting of a two-phase γ/ γ ' microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ' phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/ γ ' microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ' particles with planar γ/ γ ' interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples-the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.

5.
MethodsX ; 3: 279-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27114926

RESUMO

The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

6.
Nano Lett ; 16(1): 105-13, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26569137

RESUMO

Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.


Assuntos
Vidro/química , Nanofibras/química , Dióxido de Silício/química , Resistência à Tração , Humanos , Transição de Fase , Temperatura
7.
Data Brief ; 3: 209-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26217746

RESUMO

Experimental and theoretical studies on nanowires have reported a size-dependence of the Young׳s modulus in the axial direction, which has been attributed to the increasing influence of surface stresses with decreasing wire diameter. Internal interfaces and their associated interface stresses could lead to similar changes in the elastic properties. In Kobler et al. [1], however, we reported results from atomistic calculations which showed for Ag that twin boundaries have a negligible effect on the Young׳s modulus. Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

8.
PLoS One ; 9(4): e93309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691379

RESUMO

We report molecular dynamics simulations of shear in a biomimetic hydroxyapatite-collagen composite. Our model exhibits elastic properties fully dominated by the inorganic component. However, beyond the elastic regime the biomolecules along with the hierarchical nature of the composite account for the formation of structure-inherent slip zones. These accommodate shear without compromising the overall structure and lead to the sliding of intrinsically defined rods at roughly constant restoring force. Upon releasing load, rod displacement is reversible and backcreep is observed as gradual ionic rearrangement in the slip zone, subjected to an activation barrier.


Assuntos
Apatitas/química , Biomimética , Proteínas/química , Resistência ao Cisalhamento , Materiais Biomiméticos/química , Colágeno/química , Durapatita/química , Simulação de Dinâmica Molecular
9.
ACS Nano ; 8(2): 1629-38, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24417379

RESUMO

Recent progress in achieving high degrees of monodispersity in chemical synthesis of complex nanostructures creates the unique situation in which individual nanostructures become representative for the whole ensemble. Under these conditions, atomistic simulations can play a completely new role in interpreting structural data obtained from averaging techniques. We apply this approach to fivefold twinned Ag nanowires for which the existence of an ambient-stable tetragonal phase in the nanowire core has been recently proposed. Quantitative comparison of experimental X-ray diffraction data with atomistic calculations unequivocally shows that the diffractograms can be fully explained by the complex strain state and defect structure of fivefold twinned Ag nanowires with fcc crystal structure. In addition, our approach enables rapid and accurate determination of wire diameters by a modified Scherrer analysis which uses a database generated by atomistic simulations.

10.
Nat Commun ; 5: 3033, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24398783

RESUMO

Mechanical response of metal nanowires has recently attracted a lot of interest due to their ultra-high strengths and unique deformation behaviours. Atomistic simulations have predicted that face-centered cubic metal nanowires deform in different modes depending on the orientation between wire axis and loading direction. Here we report, by combination of in situ transmission electron microscopy and molecular dynamic simulation, the conditions under which particular deformation mechanisms take place during the uniaxial loading of [110]-oriented Au nanowires. Furthermore, by performing cyclic uniaxial loading, we show reversible plastic deformation by twinning and consecutive detwinning in tension and compression, respectively. Molecular dynamics simulations rationalize the observed behaviours in terms of the orientation-dependent resolved shear stress on the leading and trailing partial dislocations, their potential nucleation sites and energy barriers. This reversible twinning-detwinning process accommodates large strains that can be beneficially utilized in applications requiring high ductility in addition to ultra-high strength.

11.
Phys Rev Lett ; 97(17): 170201, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-17155444

RESUMO

We introduce a simple local atomic structure optimization algorithm which is significantly faster than standard implementations of the conjugate gradient method and often competitive with more sophisticated quasi-Newton schemes typically used in ab initio calculations. It is based on conventional molecular dynamics with additional velocity modifications and adaptive time steps. The surprising efficiency and especially the robustness and versatility of the method is illustrated using a variety of test cases from nanoscience, solid state physics, materials research, and biochemistry.


Assuntos
Algoritmos , Modelos Químicos , Fenretinida/química , Conformação Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA