Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Trop Anim Health Prod ; 56(4): 132, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642253

RESUMO

The objectives of this study were to evaluate the influence of inbreeding on growth traits and body measurements, as well as on the estimation of genetic parameters and genetic trends in Guzerá cattle. Phenotypic records of 4,212 animals selected for postweaning weight from Guzerá Breeding Program of Advanced Beef Cattle Research Center were utilized. The pedigree file contained records from 7,213 animals born from 1928 to 2019. The traits analyzed were: birth weight (BW), weights adjusted to 210, 378 and 550 days of age (W210, W378 and W550, respectively), chest girth at 378 and 550 days of age (CG378 and CG550), scrotal circumference (SC), and hip height at 378 and 550 days of age (HH378 and H550). Linear regression was used to evaluate the effects of inbreeding on traits. Genetic parameters were obtained using models including or not the effect of inbreeding as a covariate. Inbreeding had negative effects (P ≤ 0.01) on BW (-0.09 kg), W378 (-2.86 kg), W550 (-2.95 kg), HH378 (-0.10 cm), and H550 (-0.29 cm). The lowest and highest heritability estimates were obtained for W210 (0.21 ± 0.07) and HH550 (0.57 ± 0.06), respectively. The genetic correlations were strong and positive between all traits, ranging from 0.44 ± 0.08 (SC x HH) to 0.99 ± 0.01 (W378 x W550). Spearman correlations between EBVs obtained with or without inbreeding effect ranged from 0.968 to 0.995 (P < 0.01). The results indicate loss of productive performance in inbred animals. However, the inclusion of inbreeding coefficient in genetic evaluation models did not alter the magnitude of genetic parameters or genetic trends for the traits studied.


Assuntos
Endogamia , Clima Tropical , Gravidez , Feminino , Bovinos/genética , Animais , Fenótipo , Parto , Peso ao Nascer
2.
Animals (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766249

RESUMO

The identification and selection of genetically superior animals for residual feed intake (RFI) could enhance productivity and minimize environmental impacts. The aim of this study was to use RNA-seq data to identify the differentially expressed genes (DEGs), known non-coding RNAs (ncRNAs), specific biomarkers and enriched biological processes associated with RFI of the liver in Nellore cattle in two genetic groups. In genetic group 1 (G1), 24 extreme RFI animals (12 low RFI (LRFI) versus 12 high RFI (HRFI)) were selected from a population of 60 Nellore bulls. The RNA-seq of the samples from their liver tissues was performed using an Illumina HiSeq 2000. In genetic group 2 (G2), 20 samples of liver tissue of Nellore bulls divergent for RFI (LRFI, n = 10 versus HRFI, n = 10) were selected from 83 animals. The raw data of the G2 were chosen from the ENA repository. A total of 1811 DEGs were found for the G1 and 2054 for the G2 (p-value ≤ 0.05). We detected 88 common genes in both genetic groups, of which 33 were involved in the immune response and in blocking oxidative stress. In addition, seven (B2M, ADSS, SNX2, TUBA4A, ARHGAP18, MECR, and ABCF3) possible gene biomarkers were identified through a receiver operating characteristic analysis (ROC) considering an AUC > 0.70. The B2M gene was overexpressed in the LRFI group. This gene regulates the lipid metabolism protein turnover and inhibits cell death. We also found non-coding RNAs in both groups. MIR25 was up-regulated and SNORD16 was down-regulated in the LRFI for G1. For G2, up-regulated RNase_MRP and SCARNA10 were found. We highlight MIR25 as being able to act by blocking cytotoxicity and oxidative stress and RMRP as a blocker of mitochondrial damage. The biological pathways associated with RFI of the liver in Nellore cattle in the two genetic groups were for energy metabolism, protein turnover, redox homeostasis and the immune response. The common transcripts, biomarkers and metabolic pathways found in the two genetic groups make this unprecedented work even more relevant, since the results are valid for different herds raised in different ways. The results reinforce the biological importance of these known processes but also reveal new insights into the complexity of the liver tissue transcriptome of Nellore cattle.

3.
J Anim Sci Biotechnol ; 12(1): 79, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34261531

RESUMO

BACKGROUND: Ruminants rely upon a complex community of microbes in their rumen to convert host-indigestible feed into nutrients. However, little is known about the association between the rumen microbiota and feed efficiency traits in Nellore (Bos indicus) cattle, a breed of major economic importance to the global beef market. Here, we compare the composition of the bacterial, archaeal and fungal communities in the rumen of Nellore steers with high and low feed efficiency (FE) phenotypes, as measured by residual feed intake (RFI). RESULTS: The Firmicutes to Bacteroidetes ratio was significantly higher (P < 0.05) in positive-RFI steers (p-RFI, low feed efficiency) than in negative-RFI (n-RFI, high feed efficiency) steers. The differences in bacterial composition from steers with high and low FE were mainly associated with members of the families Lachnospiraceae, Ruminococcaceae and Christensenellaceae, as well as the genus Prevotella. Archaeal community richness was lower (P < 0.05) in p-RFI than in n-RFI steers and the genus Methanobrevibacter was either increased or exclusive of p-RFI steers. The fungal genus Buwchfawromyces was more abundant in the rumen solid fraction of n-RFI steers (P < 0.05) and a highly abundant OTU belonging to the genus Piromyces was also increased in the rumen microbiota of high-efficiency steers. However, analysis of rumen fermentation variables and functional predictions indicated similar metabolic outputs for the microbiota of distinct FE groups. CONCLUSIONS: Our results demonstrate that differences in the ruminal microbiota of high and low FE Nellore steers comprise specific taxa from the bacterial, archaeal and fungal communities. Biomarker OTUs belonging to the genus Piromyces were identified in animals showing high feed efficiency, whereas among archaea, Methanobrevibacter was associated with steers classified as p-RFI. The identification of specific RFI-associated microorganisms in Nellore steers could guide further studies targeting the isolation and functional characterization of rumen microbes potentially important for the energy-harvesting efficiency of ruminants.

4.
J Anim Sci ; 99(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674822

RESUMO

Data of comparative slaughter were used to determine Nellore bulls' net energy requirements classified as efficient or inefficient according to residual feed intake (RFI) and selection lines (SL). Sixty-seven Nellore bulls from the selected (SE) and control (CO) lines of the selection program for postweaning weight gain were used. The animals underwent digestibility trials before being submitted to the finishing trial. Sixteen bulls were slaughtered at the beginning of the finishing trial, and their body composition was used as the baseline for the remaining animals. For body composition determinations, whole empty body components were weighed, ground, and subsampled for chemical analyses. Initial body composition was determined with equations developed from the baseline group using shrunk body weight, fat, and protein. The low RFI (LRFI) and CO animals had a lower dry matter (DMI) and nutrient intake (P < 0.05) than high RFI (HRFI) and SE animals, without alterations in digestibility coefficients (P > 0.05). During the finishing trial, DMI remained lower for LRFI and CO animals. Growth performance was similar between RFI classes, except for empty body weight gain that tended to be higher for LRFI than HRFI (P = 0.091). The SE animals had less fat content on the empty body (P = 0.005) than CO. Carcasses tended to be leaner for LRFI than HRFI (P = 0.080) and for SE than CO (P = 0.066) animals. LRFI animals retained more energy (P = 0.049) and had lower heat production (HP; P = 0.033) than the HRFI ones. Retained energy was not influenced by SL (P = 0.165), but HP tended to be higher for SE when compared to CO (P = 0.075) animals. Net energy requirement for maintenance (NEm) was lower for LRFI than HRFI (P = 0.009), and higher for SE than CO (P = 0.046) animals. There was an interaction tendency between RFI and SL (P = 0.063), suggesting that NEm was lower for LRFI+CO than HRFI+CO (P = 0.006), with no differences for SE (P = 0.527) animals. The efficiency of ME utilization for maintenance (km) of LRFI and HRFI animals were 62.6% and 58.4%, respectively, and for SE and CO were 59.0% and 62.1%, respectively. The breeding program for postweaning weight has not improved feed efficiency over the years, with RFI classification not being a promising selection tool for SE animals. Classification based on RFI seems to be useful in animals that have not undergone the breeding program, with LRFI animals having lower energy requirements than the HRFI ones.


Assuntos
Ração Animal , Dieta , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Ingestão de Alimentos , Masculino , Necessidades Nutricionais , Aumento de Peso
5.
PLoS One ; 15(6): e0233926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492042

RESUMO

This study evaluated 53 primiparous cows (36.8±1.23 months old and 484±40.9 kg of body weight) performance tested (GrowSafe® System) from 22±5 to 190±13 days of lactation in order to obtain daily dry matter intake (DMI). The animals received a high-forage diet (forage-to-concentrate ratio of 90:10). Milk production of the cows was evaluated three times by mechanical milking and the energy-corrected milk yield (ECMY) was calculated. Energy status (through the indicators glucose, cholesterol, triglycerides, and ß-hydroxybutyrate), protein status (indicators albumin, urea, and creatinine), mineral status (indicators calcium, phosphorus, and magnesium), and hormonal status (indicators insulin and cortisol) were estimated four times throughout lactation. The residual feed intake (RFI) of cows was calculated considering DMI, average daily gain (ADG) and mid-test metabolic weight (BW0.75) obtained in early lactation (from 22±5 to 102±7 days), and the animals were classified as negative (most efficient) or positive RFI (least efficient). The RFI model explained 53% of the variation in DMI. The mean DMI, ADG, ECMY, and calf weight as a percentage of cow weight were 12.47±2.70 kg DM/day, 0.632±0.323 kg/day, 10.47±3.23 kg/day, and 36.6±5.39%, respectively. Negative RFI cows consumed 11.5% less DM than positive RFI cows, with performance and metabolic profile being similar to those of positive RFI cows, except for a lower milk protein content and higher blood cholesterol concentration. In conclusion, negative (most efficient) and positive RFI (least efficient) Nellore cows, fed an ad libitum high-forage diet, produced similar amounts of milk, fat and lactose and had similar subcutaneous fat thickness, weight, calf weight as a percentage of cow weight, and blood metabolite concentrations (except for cholesterol). Therefore, there are economic benefits to utilizing RFI in a cow herd since cattle had decreased DMI with similar overall performance, making them more profitable due to lower input costs.


Assuntos
Ração Animal , Criação de Animais Domésticos/métodos , Bovinos/fisiologia , Comportamento Alimentar/fisiologia , Lactação/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Desmame , Aumento de Peso/fisiologia
6.
Front Microbiol ; 10: 1263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293524

RESUMO

The ruminant gastrointestinal tract (GIT) microbiome plays a major role in the health, physiology and production traits of the host. In this work, we characterized the bacterial and fungal microbiota of the rumen, small intestine (SI), cecum and feces of 27 Nelore steers using next-generation sequencing and evaluated biochemical parameters within the GIT segments. We found that only the bacterial microbiota clustered according to each GIT segment. Bacterial diversity and richness as well as volatile fatty acid concentration was lowest in the SI. Taxonomic grouping of bacterial operational taxonomic units (OTUs) revealed that Lachnospiraceae (24.61 ± SD 6.58%) and Ruminococcaceae (20.87 ± SD 4.22%) were the two most abundant taxa across the GIT. For the fungi, the family Neocallismastigaceae dominated in all GIT segments, with the genus Orpinomyces being the most abundant. Twenty-eight bacterial and six fungal OTUs were shared across all GIT segments in at least 50% of the steers. We also evaluated if the fecal-associated microbiota of steers showing negative and positive residual feed intake (n-RFI and p-RFI, respectively) was associated with their feed efficiency phenotype. Diversity indices for both bacterial and fungal fecal microbiota did not vary between the two feed efficiency groups. Differences in the fecal bacterial composition between high and low feed efficiency steers were primarily assigned to OTUs belonging to the families Lachnospiraceae and Ruminococcaceae and to the genus Prevotella. The fungal OTUs shared across the GIT did not vary between feed efficiency groups, but 7 and 3 OTUs were found only in steers with positive and negative RFI, respectively. These results provide further insights into the composition of the Nelore GIT microbiota, which could have implications for improving animal health and productivity. Our findings also reveal differences in fecal-associated bacterial OTUs between steers from different feed efficiency groups, suggesting that fecal sampling may represent a non-invasive strategy to link the bovine microbiota with productivity phenotypes.

8.
Trop Anim Health Prod ; 49(3): 529-535, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28124731

RESUMO

Understanding the reasons why animals of similar performances have different feed requirements is important to increase profits for cattle producers and to decrease the environmental footprint of beef cattle production. This study was carried out aiming to identify the associations between residual feed intake (RFI) and animal performance, nutrient digestibility, and blood metabolites related to energy balance of young Nellore bulls during the finishing period. Animals previously classified as low (n = 13) and high RFI (n = 12), with average initial body weight of 398 kg and age of 503 days were used. Cattle were fed a high energy diet and were slaughtered when rib fat thickness measured by ultrasound between the 12th and 13th ribs reached the minimum of 4 mm. A completely randomized design was adopted, being data analyzed with a mixed model that included the random effect of slaughter group, the fixed effect of RFI class, and linear effect of the covariate feedlot time. No differences were found (p > 0.10) between RFI classes for performance, dry matter, and nutrients intake. However, dry (p = 0.0911) and organic matter (p = 0.0876) digestibility tended to be lower, and digestibility of neutral detergent fiber corrected for ash and protein (p = 0.0017), and total digestible nutrients (p = 0.0657) were lower for high RFI animals, indicating lesser capacity of food utilization. Difference between low and high RFI animals was also found for blood cortisol at the end of the trial (p = 0.0044), having low RFI animals lower cortisol concentrations. Differences in the ability to digest food can affect the efficiency of transforming feed into meat by Nellore cattle.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Ingestão de Energia , Rúmen/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/sangue , Digestão , Comportamento Alimentar , Masculino
9.
PLoS One ; 11(10): e0164390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27760167

RESUMO

The objective of this study was to identify genomic regions and metabolic pathways associated with dry matter intake, average daily gain, feed efficiency and residual feed intake in an experimental Nellore cattle population. The high-density SNP chip (Illumina High-Density Bovine BeadChip, 777k) was used to genotype the animals. The SNP markers effects and their variances were estimated using the single-step genome wide association method. The (co)variance components were estimated by Bayesian inference. The chromosome segments that are responsible for more than 1.0% of additive genetic variance were selected to explore and determine possible quantitative trait loci. The bovine genome Map Viewer was used to identify genes. In total, 51 genomic regions were identified for all analyzed traits. The heritability estimated for feed efficiency was low magnitude (0.13±0.06). For average daily gain, dry matter intake and residual feed intake, heritability was moderate to high (0.43±0.05; 0.47±0.05, 0.18±0.05, respectively). A total of 8, 17, 14 and 12 windows that are responsible for more than 1% of the additive genetic variance for dry matter intake, average daily gain, feed efficiency and residual feed intake, respectively, were identified. Candidate genes GOLIM4, RFX6, CACNG7, CACNG6, CAPN8, CAPN2, AKT2, GPRC6A, and GPR45 were associated with feed efficiency traits. It was expected that the response to selection would be higher for residual feed intake than for feed efficiency. Genomic regions harboring possible QTL for feed efficiency indicator traits were identified. Candidate genes identified are involved in energy use, metabolism protein, ion transport, transmembrane transport, the olfactory system, the immune system, secretion and cellular activity. The identification of these regions and their respective candidate genes should contribute to the formation of a genetic basis in Nellore cattle for feed efficiency indicator traits, and these results would support the selection for these traits.


Assuntos
Ingestão de Alimentos/genética , Genômica , Animais , Peso Corporal/genética , Bovinos , Polimorfismo de Nucleotídeo Único
10.
PLoS One ; 11(8): e0161366, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537268

RESUMO

This study evaluated phenotypic (rph) and genetic correlations (rg) between 8 feed efficiency traits and other traits of economic interest including weight at selection (WS), loin-eye area (LEA), backfat thickness (BF), and rump fat thickness (RF) in Nellore cattle. Feed efficiency traits were gain:feed, residual feed intake (RFI), residual feed intake adjusted for backfat thickness (RFIb) and for backfat and rump fat thickness (RFIsf), residual body weight gain (RG), residual intake and body weight gain (RIG), and residual intake and body weight gain using RFIb (RIGb) and RFIsf (RIGsf). The variance components were estimated by the restricted maximum likelihood method using a two-trait animal model. The heritability estimates (h2) were 0.14, 0.24, 0.20, 0.22, 0.19, 0.15, 0.11 and 0.11 for gain:feed, RFI, RFIb, RFIsf, RG, RIG, RIGb and RIGsf, respectively. All rph values between traits were close to zero, except for the correlation of feed efficiency traits with dry matter intake and average daily gain. High rg values were observed for the correlation of dry matter intake, average daily gain and metabolic weight with WS and hip height (>0.61) and low to medium values (0.15 to 0.48) with the carcass traits (LEA, BF, RF). Among the feed efficiency traits, RG showed the highest rg with WS and hip height (0.34 and 0.25) and the lowest rg with subcutaneous fat thickness (-0.17 to 0.18). The rg values of RFI, RFIb and RFIsf with WS (0.17, 0.23 and 0.22), BF (0.37, 0.33 and 0.33) and RF (0.30, 0.31 and 0.32) were unfavorable. The rg values of gain:feed, RIG, RIGb and RIGsf with WS were low and favorable (0.07 to 0.22), while medium and unfavorable (-0.22 to -0.45) correlations were observed with fat thickness. The inclusion of subcutaneous fat thickness in the models used to calculate RFI did not reduce the rg between these traits. Selecting animals for higher feed efficiency will result in little or no genetic change in growth and will decrease subcutaneous fat thickness in the carcass.


Assuntos
Bovinos/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Peso Corporal/genética , Peso Corporal/fisiologia , Bovinos/genética , Bovinos/metabolismo , Ingestão de Alimentos , Feminino , Estudos de Associação Genética , Masculino , Carne/normas , Fenótipo , Característica Quantitativa Herdável , Desmame
11.
Trop Anim Health Prod ; 47(7): 1381-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26141747

RESUMO

This study aimed to evaluate differences in efficiency of feed utilization between young Nellore males and females by comparing growth traits, feed intake, blood parameters, and ingestive behavior of the animals. Data from 768 Nellore males and females that participated in eight performance tests for individual feed intake evaluation were used. Performance and feed efficiency measures, efficiency-related hematological, metabolic and hormonal variables, and data regarding ingestive behavior were collected. Feed efficiency measures were defined by the relationship between performance and feed intake. Data were analyzed using mixed models that included the fixed effects of sex, herd, and the covariate age within sex and the random effects of facility within year, year, and residual. Significant differences between males and females were observed for traits related to weight gain and feed intake. Although individual dynamics of feed efficiency measures differed between males and females, no significant differences in residual feed intake, feed efficiency, or relative growth rate were observed between sexes. Significant differences between sexes were found for platelets, red blood cells, hemoglobin, creatinine, glucose, urea, triglycerides, insulin, cortisol, and IGF-I. Females spent more time feeding and less time ruminating when compared to males. However, males exhibited higher feeding efficiency and lower rumination efficiency than females. Growing Nellore males and females are efficient in feed utilization, and the differences in blood variables observed are probably due to differences in body size and feed intake. Males spend less time eating, consume more food, and spend more time ruminating than females.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Comportamento Alimentar , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Brasil , Bovinos/sangue , Feminino , Hidrocortisona/sangue , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Masculino
12.
Mol Biol Rep ; 42(2): 559-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25586767

RESUMO

Several measures have been proposed to investigate and improve feed efficiency in cattle. One of the most commonly used measure of feed efficiency is residual feed intake (RFI), which is estimated as the difference between actual feed intake and expected feed intake based on the animal's average live weight. This measure permits to identify and select the most efficient animals without selecting for higher mature weight. Mitochondrial function has been indicated as a major factor that influences RFI. The analysis of genes involved in mitochondrial function is therefore an alternative to identify molecular markers associated with higher feed efficiency. This study analyzed the expression of PGC1α, TFAM, UCP2 and UCP3 genes by quantitative real-time PCR in liver and muscle tissues of two groups of Nellore cattle divergently ranked on RFI values in order to evaluate the relationship of these genes with RFI. In liver tissue, higher expression of TFAM and UCP2 genes was observed in the negative RFI group. Expression of PGC1α gene did not differ significantly between the two groups, whereas UCP3 gene was not expressed in liver tissue. In muscle tissue, higher expression of TFAM gene was observed in the positive RFI group. Expression of PGC1α, UCP2 and UCP3 genes did not differ significantly between the two groups. These results suggest the use of TFAM and UCP2 as possible candidate gene markers in breeding programs designed to increase the feed efficiency of Nellore cattle.


Assuntos
Ingestão de Alimentos/genética , Expressão Gênica , Estudos de Associação Genética , Mitocôndrias/genética , Característica Quantitativa Herdável , Animais , Bovinos , Feminino , Masculino , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA