Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(5): 109628, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628961

RESUMO

Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) affects up to half of people living with HIV-1 and causes long term neurological consequences. The pathophysiology of HIV-1-induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC)-derived microglia combined with sliced neocortical organoids. Incubation of microglia with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2) elicited productive infection and inflammatory activation. RNA sequencing revealed significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate a role for persistent type I interferon signaling in HIV-1-infected microglia in a human neural model, suggesting its potential significance in the pathogenesis of HAND.

2.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961371

RESUMO

Human immunodeficiency virus type-1 (HIV-1) associated neurocognitive disorder (HAND) affects up to half of HIV-1 positive patients with long term neurological consequences, including dementia. There are no effective therapeutics for HAND because the pathophysiology of HIV-1 induced glial and neuronal functional deficits in humans remains enigmatic. To bridge this knowledge gap, we established a model simulating HIV-1 infection in the central nervous system using human induced pluripotent stem cell (iPSC) derived microglia combined with sliced neocortical organoids. Upon incubation with two replication-competent macrophage-tropic HIV-1 strains (JRFL and YU2), we observed that microglia not only became productively infected but also exhibited inflammatory activation. RNA sequencing revealed a significant and sustained activation of type I interferon signaling pathways. Incorporating microglia into sliced neocortical organoids extended the effects of aberrant type I interferon signaling in a human neural context. Collectively, our results illuminate the role of persistent type I interferon signaling in HIV-1 infected microglial in a human neural model, suggesting its potential significance in the pathogenesis of HAND.

3.
Methods Mol Biol ; 2683: 259-273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300782

RESUMO

Whole cell patch clamp recording techniques are commonly used to assay membrane excitability, ion channel function, and synaptic activity in neurons. However, assaying these functional properties of human neurons remains difficult because of the difficulty in obtaining human neuronal cells. Recent advents in stem cell biology, especially the development of the induced pluripotent stem cells, made it possible to generate human neuronal cells in both 2-dimensional (2D) monolayer cultures and 3D brain-organoid cultures. Here, we describe the whole cell patch clamp methods of recording neuronal physiology from human neuronal cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Neurônios/metabolismo , Fenômenos Eletrofisiológicos , Encéfalo , Eletrofisiologia
4.
Biomed Mater Devices ; 1(1): 21-37, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343513

RESUMO

Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.

5.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34945423

RESUMO

Mental disorders have high prevalence, but the efficacy of existing therapeutics is limited, in part, because the pathogenic mechanisms remain enigmatic. Current models of neural circuitry include animal models and post-mortem brain tissue, which have allowed enormous progress in understanding the pathophysiology of mental disorders. However, these models limit the ability to assess the functional alterations in short-range and long-range network connectivity between brain regions that are implicated in many mental disorders, e.g., schizophrenia and autism spectrum disorders. This work addresses these limitations by developing an in vitro model of the human brain that models the in vivo cerebral tract environment. In this study, microfabrication and stem cell differentiation techniques were combined to develop an in vitro cerebral tract model that anchors human induced pluripotent stem cell-derived cerebral organoids (COs) and provides a scaffold to promote the formation of a functional connecting neuronal tract. Two designs of a Cerebral Organoid Connectivity Apparatus (COCA) were fabricated using SU-8 photoresist. The first design contains a series of spikes which anchor the CO to the COCA (spiked design), whereas the second design contains flat supporting structures with open holes in a grid pattern to anchor the organoids (grid design); both designs allow effective media exchange. Morphological and functional analyses reveal the expression of key neuronal markers as well as functional activity and signal propagation along cerebral tracts connecting CO pairs. The reported in vitro models enable the investigation of critical neural circuitry involved in neurodevelopmental processes and has the potential to help devise personalized and targeted therapeutic strategies.

6.
J Microelectromech Syst ; 30(4): 569-581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539168

RESUMO

Intracortical neural probes are a key enabling technology for acquiring high fidelity neural signals within the cortex. They are viewed as a crucial component of brain-computer interfaces (BCIs) in order to record electrical activities from neurons within the brain. Smaller, more flexible, polymer-based probes have been investigated for their potential to limit the acute and chronic neural tissue response. Conventional methods of patterning electrodes and connecting traces on a single supporting layer can limit the number of recording sites which can be defined, particularly when designing narrower probes. We present a novel strategy of increasing the number of recording sites without proportionally increasing the size of the probe by using a multilayer fabrication process to vertically layer recording traces on multiple Parylene support layers, allowing more recording traces to be defined on a smaller probe width. Using this approach, we are able to define 16 electrodes on 4 supporting layers (4 electrodes per layer), each with a 30 µm diameter recording window and 5 µm wide connecting trace defined by conventional LWUV lithography, on an 80 µm wide by 9 µm thick microprobe. Prior to in vitro and in vivo validation, the multilayer probes are electrically characterized via impedance spectroscopy and evaluating crosstalk between adjacent layers. Demonstration of acute in vitro recordings in a cerebral organoid model and in vivo recordings in a murine model indicate the probe's capability for single unit recordings. This work demonstrates the ability to fabricate smaller, more compliant neural probes without sacrificing electrode density.

7.
Stem Cell Reports ; 16(8): 1923-1937, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297942

RESUMO

Microglia play critical roles in brain development, homeostasis, and disease. Microglia in animal models cannot accurately model human microglia due to notable transcriptomic and functional differences between human and other animal microglia. Incorporating human pluripotent stem cell (hPSC)-derived microglia into brain organoids provides unprecedented opportunities to study human microglia. However, an optimized method that integrates appropriate amounts of microglia into brain organoids at a proper time point, resembling in vivo brain development, is still lacking. Here, we report a new brain region-specific, microglia-containing organoid model by co-culturing hPSC-derived primitive neural progenitor cells and primitive macrophage progenitors. In the organoids, the number of human microglia can be controlled, and microglia exhibit phagocytic activity and synaptic pruning function. Furthermore, human microglia respond to Zika virus infection of the organoids. Our findings establish a new microglia-containing brain organoid model that will serve to study human microglial function in a variety of neurological disorders.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Encéfalo/citologia , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/citologia , Microglia/virologia , Modelos Neurológicos , Células-Tronco Neurais/metabolismo , Organoides/citologia , Organoides/virologia , Sinapses/genética , Zika virus/fisiologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
8.
Alcohol ; 87: 97-109, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32561311

RESUMO

The acute and chronic effects of alcohol on the brain and behavior are linked to alterations in inhibitory synaptic transmission. Alcohol's most consistent effect at the synaptic level is probably a facilitation of γ-aminobutyric acid (GABA) release, as seen from several rodent studies. The impact of alcohol on GABAergic neurotransmission in human neurons is unknown, due to a lack of a suitable experimental model. Human neurons can also be used to model effects of genetic variants linked with alcohol use disorders (AUDs). The A118G single nucleotide polymorphism (SNP rs1799971) of the OPRM1 gene encoding the N40D (D40 minor allele) mu-opioid receptor (MOR) variant has been linked with individuals who have an AUD. However, while N40D is clearly associated with other drugs of abuse, involvement with AUDs is controversial. In this study, we employed Ascl1-and Dlx2-induced inhibitory neuronal cells (AD-iNs) generated from human iPS cell lines carrying N40D variants, and investigated the impact of ethanol acutely and chronically on GABAergic synaptic transmission. We found that N40 AD-iNs display a stronger facilitation (versus D40) of spontaneous and miniature inhibitory postsynaptic current frequency in response to acute ethanol application. Quantitative immunocytochemistry of Synapsin 1+ synaptic puncta revealed a similar synapse number between N40 and D40 iNs, suggesting an ethanol modulation of presynaptic GABA release without affecting synapse density. Interestingly, D40 iNs exposed to chronic intermittent ethanol application caused a significant increase in mIPSC frequency, with only a modest enhancement observed in N40 iNs. These data suggest that the MOR genotype may confer differential sensitivity to synaptic output, which depends on ethanol exposure time and concentration for AD-iNs and may help explain alcohol dependence in individuals who carry the MOR D40 SNPs. Furthermore, this study supports the use of human neuronal cells carrying risk-associated genetic variants linked to disease, as in vitro models to assay the synaptic actions of alcohol on human neuronal cells.


Assuntos
Etanol , Neurônios/efeitos dos fármacos , Receptores Opioides mu/genética , Transmissão Sináptica/efeitos dos fármacos , Animais , Células Cultivadas , Etanol/toxicidade , Humanos , Camundongos
9.
Nat Commun ; 11(1): 1577, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221280

RESUMO

Microglia, the brain-resident macrophages, exhibit highly dynamic functions in neurodevelopment and neurodegeneration. Human microglia possess unique features as compared to mouse microglia, but our understanding of human microglial functions is largely limited by an inability to obtain human microglia under homeostatic states. Here, we develop a human pluripotent stem cell (hPSC)-based microglial chimeric mouse brain model by transplanting hPSC-derived primitive macrophage progenitors into neonatal mouse brains. Single-cell RNA-sequencing of the microglial chimeric mouse brains reveals that xenografted hPSC-derived microglia largely retain human microglial identity, as they exhibit signature gene expression patterns consistent with physiological human microglia and recapitulate heterogeneity of adult human microglia. Importantly, the engrafted hPSC-derived microglia exhibit dynamic response to cuprizone-induced demyelination and species-specific transcriptomic differences in the expression of neurological disease-risk genes in microglia. This model will serve as a tool to study the role of human microglia in brain development and degeneration.


Assuntos
Encéfalo/citologia , Diferenciação Celular , Quimera/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Animais , Linhagem Celular , Cuprizona , Doenças Desmielinizantes/patologia , Feminino , Humanos , Imageamento Tridimensional , Camundongos , Microglia/transplante , RNA-Seq , Análise de Célula Única , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA