Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Chem ; 67(2): 1225-1242, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38228402

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate inflammatory processes. Here, we describe the discovery of two clinical candidate IRAK4 inhibitors, BAY1834845 (zabedosertib) and BAY1830839, starting from a high-throughput screening hit derived from Bayer's compound library. By exploiting binding site features distinct to IRAK4 using an in-house docking model, liabilities of the original hit could surprisingly be overcome to confer both candidates with a unique combination of good potency and selectivity. Favorable DMPK profiles and activity in animal inflammation models led to the selection of these two compounds for clinical development in patients.


Assuntos
Ensaios de Triagem em Larga Escala , Indazóis , Quinases Associadas a Receptores de Interleucina-1 , Piridinas , Animais , Humanos , Sítios de Ligação , Inflamação
2.
Mol Pharmacol ; 104(3): 105-114, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348913

RESUMO

The human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R), a class B G-protein-coupled receptor (GPCR) identified almost 30 years ago, represents an important pharmacological target in the areas of neuroscience, oncology, and immunology. Despite interest in this target, only a very limited number of small molecule modulators have been reported for this receptor. We herein describe the results of a drug discovery program aiming for the identification of a potent and selective hPAC1-R antagonist. An initial high-throughput screening (HTS) screen of 3.05 million compounds originating from the Bayer screening library failed to identify any tractable hits. A second, completely revised screen using native human embryonic kidney (HEK)293 cells yielded a small number of hits exhibiting antagonistic properties (4.2 million compounds screened). BAY 2686013 (1) emerged as a promising compound showing selective antagonistic activity in the submicromolar potency range. In-depth characterization supported the hypothesis that BAY 2686013 blocks receptor activity in a noncompetitive manner. Preclinical, pharmacokinetic profiling indicates that BAY 2686013 is a valuable tool compound for better understanding the signaling and function of hPAC1-R. SIGNIFICANCE STATEMENT: Although the human pituitary adenylate cyclase-activating polypeptide receptor (hPAC1-R) is of major significance as a therapeutic target with a well documented role in pain signaling, only a very limited number of small-molecule (SMOL) compounds are known to modulate its activity. We identified and thoroughly characterized a novel, potent, and selective SMOL antagonist of hPAC1-R (acting in an allosteric manner). These characteristics make BAY 2686013 an ideal tool for further studies.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química
3.
J Med Chem ; 66(2): 1583-1600, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622903

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a voltage-dependent, ligand-gated ion channel, and activation thereof is linked to a variety of painful conditions. Preclinical studies have demonstrated the role of TRPA1 receptors in a broad range of animal models of acute, inflammatory, and neuropathic pain. In addition, a clinical study using the TRPA1 antagonist GRC-17536 (Glenmark Pharmaceuticals) demonstrated efficacy in a subgroup of patients with painful diabetic neuropathy. Consequently, there is an increasing interest in TRPA1 inhibitors as potential analgesics. Herein, we report the identification of a fragment-like hit from a high-throughput screening (HTS) campaign and subsequent optimization to provide a novel and brain-penetrant TRPA1 inhibitor (compound 18, BAY-390), which is now being made available to the research community as an open-source in vivo probe.


Assuntos
Neuralgia , Canais de Potencial de Receptor Transitório , Animais , Analgésicos/farmacologia , Anquirinas , Canal de Cátion TRPA1
4.
J Med Chem ; 62(5): 2541-2563, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30707023

RESUMO

The presence and growth of endometrial tissue outside the uterine cavity in endometriosis patients are primarily driven by hormone-dependent and inflammatory processes-the latter being frequently associated with severe, acute, and chronic pelvic pain. The EP4 subtype of prostaglandin E2 (PGE2) receptors (EP4-R) is a particularly promising anti-inflammatory and antinociceptive target as both this receptor subtype and the pathways forming PGE2 are highly expressed in endometriotic lesions. High-throughput screening resulted in the identification of benzimidazole derivatives as novel hEP4-R antagonists. Careful structure-activity relationship investigation guided by rational design identified a methyl substitution adjacent to the carboxylic acid as an appropriate means to accomplish favorable pharmacokinetic properties by reduction of glucuronidation. Further optimization led to the identification of benzimidazolecarboxylic acid BAY 1316957, a highly potent, specific, and selective hEP4-R antagonist with excellent drug metabolism and pharmacokinetics properties. Notably, treatment with BAY 1316957 can be expected to lead to prominent and rapid pain relief and significant improvement of the patient's quality of life.


Assuntos
Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Endometriose/tratamento farmacológico , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Benzimidazóis/química , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 28(20): 3372-3375, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30201291

RESUMO

We report here the design and synthesis of a novel series of benzylamines that are potent and selective inhibitors of uPA with promising oral availability in rat. Further evaluation of one representative (ZK824859) of the new structural class showed that this compound lowered clinical scores when dosed in either acute or chronic mouse EAE models, suggesting that uPA inhibitors of this type could be useful for the treatment of multiple sclerosis.


Assuntos
Benzilaminas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Inibidores de Serina Proteinase/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Benzilaminas/síntese química , Benzilaminas/química , Benzilaminas/farmacocinética , Sítios de Ligação , Feminino , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacocinética , Relação Estrutura-Atividade , Ativador de Plasminogênio Tipo Uroquinase/química
6.
Chemistry ; 9(6): 1296-302, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12645018

RESUMO

The synthesis of the novel unprotected carboranyl C-glycosides 2 and 20-24 starting from ethynyl C-glycosides 1, 5-8, 10, and 13 is described. The new compounds are highly water-soluble and display only a very low cytotoxicity, which makes them promising candidates for use in boron neutron capture therapy for the treatment of cancer.


Assuntos
Antineoplásicos/síntese química , Terapia por Captura de Nêutron de Boro , Glicosídeos/síntese química , Neoplasias/terapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Configuração de Carboidratos , Sequência de Carboidratos , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular
7.
Chembiochem ; 3(2-3): 219-25, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11921401

RESUMO

The synthesis and biological evaluation of two ortho-carborane derivatives which contain a 5,6,7-trimethoxyindole (TMI) unit for use in boron neutron capture therapy is described. The TMI moiety is known to be the DNA-binding part of the highly potent anticancer agent duocarmycin A. The ortho-carborane derivatives were prepared from amino alkynes which were bound to a protected TMI carboxylic acid. Addition of decaborane(14) to the alkyne triple bond with subsequent removal of the tert-butoxycarbonyl (Boc) and benzyl protecting groups gave the desired product. Boron uptake from the ortho-carborane derivatives into B-16 melanoma cells was higher and faster than that observed with L-p-boronophenylalanine (BPA), which is in use in the clinic.


Assuntos
Boranos/farmacologia , Terapia por Captura de Nêutron de Boro/métodos , DNA de Neoplasias/metabolismo , Indóis/farmacologia , Animais , Boranos/síntese química , Boranos/metabolismo , Neoplasias Brônquicas/genética , Neoplasias Brônquicas/metabolismo , Neoplasias Brônquicas/radioterapia , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/radioterapia , Humanos , Indóis/síntese química , Indóis/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/radioterapia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/radioterapia , Camundongos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA