Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Clin Microbiol ; 62(10): e0078024, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39189735

RESUMO

Feral swine are invasive in the United States and a reservoir for infectious diseases. The increase in feral swine population and the geographic range are a concern for the spread of zoonotic diseases to humans and livestock. Feral swine could contribute to the spread of Coxiella burnetii, the causative agent of human Q fever. In this study, we characterized the seroprevalence of C. burnetii in feral swine populations of Hawai'i and Texas, which have low and high rates of human Q fever, respectively. Seropositivity rates were as high as 0.19% and 6.03% in Hawai'i and Texas, respectively, indicating that feral swine cannot be ruled out as a potential reservoir for disease transmission and spread. In Texas, we identified the overlap between seropositivity of feral swine and human Q fever incidence. These results indicate that there is a potentially low but detectable risk of C. burnetii exposure associated with feral swine populations in Hawai'i and Texas.


Assuntos
Coxiella burnetii , Febre Q , Doenças dos Suínos , Animais , Texas/epidemiologia , Coxiella burnetii/imunologia , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genética , Havaí/epidemiologia , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Estudos Soroepidemiológicos , Humanos , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Incidência , Anticorpos Antibacterianos/sangue
2.
PLoS One ; 19(8): e0308318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116080

RESUMO

Initial transmission of severe acute respiratory syndrome virus-2 (SARS-CoV-2) was highest in densely populated regions of Kenya. Transmission gradually trickled down to the less densely populated, remote and underserved regions such as the pastoral regions of Kajiado County which are characterized by poor healthcare systems. Molecular assays that were pivotal for COVID-19 diagnosis were not available in these regions. Serology is an alternative method for retrospectively tracking the transmission of SARS-CoV-2 in such populations. Dry blood spots (DBS) were prepared from consenting patients attending six health facilities in Kajiado County from March 2020 to March 2022. Upon elution, we conducted an enzyme-linked immunosorbent assay (ELISA) for the detection of SARS-Cov-2 IgG antibodies. Of the 908 DBSs we analyzed, 706 (78%) were from female participants. The overall seropositivity to SARS-Cov-2 antibodies was 7.3% (95% CI 5.7-9.1). The elderly (over 60 years) and male participants had a high likelihood of testing positive for SAR-CoV-2 infections. Mashuru (15.6%, 14/90) and Meto (15%, 19/127) health facilities registered the highest proportion of seropositive participants. Evidence of SARS-CoV-2 transmission among pastoralists in the remote and underserved regions of Kajiado County was established by DBS sampling and serologic testing.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/diagnóstico , Feminino , Masculino , Quênia/epidemiologia , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Adolescente , Anticorpos Antivirais/sangue , Adulto Jovem , Imunoglobulina G/sangue , Criança , Idoso , Pré-Escolar , Estudos Retrospectivos , Ensaio de Imunoadsorção Enzimática , Lactente
3.
PLoS One ; 19(8): e0303225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110705

RESUMO

Chronic wasting disease (CWD) has become a major concern among those involved in managing wild and captive cervid populations. CWD is a fatal, highly transmissible spongiform encephalopathy caused by an abnormally folded protein, called a prion. Prions are present in a number of tissues, including feces and urine in CWD infected animals, suggesting multiple modes of transmission, including animal-to-animal, environmental, and by fomite. CWD management is complicated by the lack of practical, non-invasive, live-animal screening tests. Recently, there has been a focus on how the volatile odors of feces and urine can be used to discriminate between infected and noninfected animals in several different species. Such a tool may prove useful in identifying potentially infected live animals, carcasses, urine, feces, and contaminated environments. Toward this goal, dogs were trained to detect and discriminate CWD infected individuals from non-infected deer in a laboratory setting. Dogs were tested with novel panels of fecal samples demonstrating the dogs' ability to generalize a learned odor profile to novel odor samples based on infection status. Additionally, dogs were transitioned from alerting to fecal samples to an odor profile that consisted of CWD infection status with a different odor background using different sections of gastrointestinal tracts. These results indicated that canine biodetectors can discriminate the specific odors emitted from the feces of non-infected versus CWD infected white-tailed deer as well as generalizing the learned response to other tissues collected from infected individuals. These findings suggest that the health status of wild and farmed cervids can be evaluated non-invasively for CWD infection via monitoring of volatile metabolites thereby providing an effective tool for rapid CWD surveillance.


Assuntos
Cervos , Fezes , Odorantes , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/transmissão , Doença de Emaciação Crônica/urina , Odorantes/análise , Fezes/química , Príons/análise , Cães
4.
mBio ; 15(4): e0018624, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511933

RESUMO

Melioidosis, caused by the intracellular bacterial pathogen and Tier 1 select agent Burkholderia pseudomallei (Bp), is a highly fatal disease endemic in tropical areas. No licensed vaccine against melioidosis exists. In preclinical vaccine studies, demonstrating protection against respiratory infection in the highly sensitive BALB/c mouse has been especially challenging. To address this challenge, we have used a safe yet potent live attenuated platform vector, LVS ΔcapB, previously used successfully to develop vaccines against the Tier 1 select agents of tularemia, anthrax, and plague, to develop a melioidosis vaccine. We have engineered melioidosis vaccines (rLVS ΔcapB/Bp) expressing multiple immunoprotective Bp antigens among type VI secretion system proteins Hcp1, Hcp2, and Hcp6, and membrane protein LolC. Administered intradermally, rLVS ΔcapB/Bp vaccines strongly protect highly sensitive BALB/c mice against lethal respiratory Bp challenge, but protection is overwhelmed at very high challenge doses. In contrast, administered intranasally, rLVS ΔcapB/Bp vaccines remain strongly protective against even very high challenge doses. Under some conditions, the LVS ΔcapB vector itself provides significant protection against Bp challenge, and consistent with this, both the vector and vaccines induce humoral immune responses to Bp antigens. Three-antigen vaccines expressing Hcp6-Hcp1-Hcp2 or Hcp6-Hcp1-LolC are among the most potent and provide long-term protection and protection even with a single intranasal immunization. Protection via the intranasal route was either comparable to or statistically significantly better than the single-deletional Bp mutant Bp82, which served as a positive control. Thus, rLVS ΔcapB/Bp vaccines are exceptionally promising safe and potent melioidosis vaccines. IMPORTANCE: Melioidosis, a major neglected disease caused by the intracellular bacterial pathogen Burkholderia pseudomallei, is endemic in many tropical areas of the world and causes an estimated 165,000 cases and 89,000 deaths in humans annually. Moreover, B. pseudomallei is categorized as a Tier 1 select agent of bioterrorism, largely because inhalation of low doses can cause rapidly fatal pneumonia. No licensed vaccine is available to prevent melioidosis. Here, we describe a safe and potent melioidosis vaccine that protects against lethal respiratory challenge with B. pseudomallei in a highly sensitive small animal model-even a single immunization is highly protective, and the vaccine gives long-term protection. The vaccine utilizes a highly attenuated replicating intracellular bacterium as a vector to express multiple key proteins of B. pseudomallei; this vector platform has previously been used successfully to develop potent vaccines against other Tier 1 select agent diseases including tularemia, anthrax, and plague.


Assuntos
Antraz , Burkholderia pseudomallei , Melioidose , Peste , Tularemia , Humanos , Animais , Camundongos , Burkholderia pseudomallei/genética , Melioidose/prevenção & controle , Camundongos Endogâmicos BALB C , Vacinas Bacterianas , Vacinas Atenuadas , Antígenos de Bactérias/genética
5.
Nat Commun ; 15(1): 274, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177138

RESUMO

The continued emergence of highly pathogenic viruses, which either thwart immune- and small molecule-based therapies or lack interventions entirely, mandates alternative approaches, particularly for prompt and facile pre- and post-exposure prophylaxis. Many highly pathogenic viruses, including coronaviruses, employ the six-helix bundle heptad repeat membrane fusion mechanism to achieve infection. Although heptad-repeat-2 decoys can inhibit viral entry by blocking six-helix bundle assembly, the biophysical and pharmacologic liabilities of peptides have hindered their clinical development. Here, we develop a chemically stapled lipopeptide inhibitor of SARS-CoV-2 as proof-of-concept for the platform. We show that our lead compound blocks infection by a spectrum of SARS-CoV-2 variants, exhibits mucosal persistence upon nasal administration, demonstrates enhanced stability compared to prior analogs, and mitigates infection in hamsters. We further demonstrate that our stapled lipopeptide platform yields nanomolar inhibitors of respiratory syncytial, Ebola, and Nipah viruses by targeting heptad-repeat-1 domains, which exhibit strikingly low mutation rates, enabling on-demand therapeutic intervention to combat viral outbreaks.


Assuntos
Infecções por Coronavirus , Lipopeptídeos , Humanos , Lipopeptídeos/farmacologia , Lipopeptídeos/uso terapêutico , Lipopeptídeos/química , Pandemias/prevenção & controle
6.
Vaccines (Basel) ; 11(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376452

RESUMO

Current SARS-CoV-2 vaccines provide protection for COVID-19-associated hospitalization and death, but remain inefficient at inhibiting initial infection and transmission. Despite updated booster formulations, breakthrough infections and reinfections from emerging SARS-CoV-2 variants are common. Intranasal vaccination to elicit mucosal immunity at the site of infection can improve the performance of respiratory virus vaccines. We developed SARS-CoV-2 M2SR, a dual SARS-CoV-2 and influenza vaccine candidate, employing our live intranasal M2-deficient single replication (M2SR) influenza vector expressing the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein of the prototype strain, first reported in January 2020. The intranasal vaccination of mice with this dual vaccine elicits both high serum IgG and mucosal IgA titers to RBD. Sera from inoculated mice show that vaccinated mice develop neutralizing SARS-CoV-2 antibody titers against the prototype and Delta virus strains, which are considered to be sufficient to protect against viral infection. Moreover, SARS-CoV-2 M2SR elicited cross-reactive serum and mucosal antibodies to the Omicron BA.4/BA.5 variant. The SARS-CoV-2 M2SR vaccine also maintained strong immune responses to influenza A with high titers of anti H3 serum IgG and hemagglutination inhibition (HAI) antibody titers corresponding to those seen from the control M2SR vector alone. With a proven safety record and robust immunological profile in humans that includes mucosal immunity, the M2SR influenza viral vector expressing key SARS-CoV-2 antigens could provide more efficient protection against influenza and SARS-CoV-2 variants.

7.
Pathogens ; 12(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242308

RESUMO

Invasive feral swine (Sus scrofa) are one of the most important wildlife species for disease surveillance in the United States, serving as a reservoir for various diseases of concern for the health of humans and domestic animals. Brucella suis, the causative agent of swine brucellosis, is one such pathogen carried and transmitted by feral swine. Serology assays are the preferred field diagnostic for B. suis infection, as whole blood can be readily collected and antibodies are highly stable. However, serological assays frequently have lower sensitivity and specificity, and few studies have validated serological assays for B. suis in feral swine. We conducted an experimental infection of Ossabaw Island Hogs (a breed re-domesticated from feral animals) as a disease-free proxy for feral swine to (1) improve understanding of bacterial dissemination and antibody response following B. suis infection and (2) evaluate potential changes in the performance of serological diagnostic assays over the course of infection. Animals were inoculated with B. suis and serially euthanized across a 16-week period, with samples collected at the time of euthanasia. The 8% card agglutination test performed best, whereas the fluorescence polarization assay demonstrated no capacity to differentiate true positive from true negative animals. From a disease surveillance perspective, using the 8% card agglutination test in parallel with either the buffered acidified plate antigen test or the Brucella abortus/suis complement fixation test provided the best performance with the highest probability of a positive assay result. Application of these combinations of diagnostic assays for B. suis surveillance among feral swine would improve understanding of spillover risks at the national level.

8.
Pathogens ; 12(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37111508

RESUMO

Anthrax is a disease that affects livestock, wildlife, and humans worldwide; however, its relative impacts on these populations remain underappreciated. Feral swine (Sus scrofa) are relatively resistant to developing anthrax, and past serosurveys have alluded to their utility as sentinels, yet empirical data to support this are lacking. Moreover, whether feral swine may assist in the dissemination of infectious spores is unknown. To address these knowledge gaps, we intranasally inoculated 15 feral swine with varying quantities of Bacillus anthracis Sterne 34F2 spores and measured the seroconversion and bacterial shedding over time. The animals also were inoculated either one or three times. The sera were evaluated by enzyme-linked immunosorbent assay (ELISA) for antibodies against B. anthracis, and nasal swabs were cultured to detect bacterial shedding from the nasal passages. We report that the feral swine developed antibody responses to B. anthracis and that the strength of the response correlated with the inoculum dose and the number of exposure events experienced. Isolation of viable bacteria from the nasal passages of the animals throughout the study period suggests that feral swine may assist in the spread of infectious spores on the landscape and have implications for the identification of environments contaminated with B. anthracis as well as the exposure risk to more susceptible hosts.

9.
Microbiol Spectr ; : e0503522, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916971

RESUMO

Oral delivery of an inexpensive COVID-19 (coronavirus disease 2019) vaccine could dramatically improve immunization rates, especially in low- and middle-income countries. Previously, we described a potential universal COVID-19 vaccine, rLVS ΔcapB/MN, comprising a replicating bacterial vector, LVS (live vaccine strain) ΔcapB, expressing the highly conserved SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) membrane and nucleocapsid (N) proteins, which, when administered intradermally or intranasally, protects hamsters from severe COVID-19-like disease after high-dose SARS-CoV-2 respiratory challenge. Here, we show that oral administration of the vaccine also protects against high-dose SARS-CoV-2 respiratory challenge; its protection is comparable to that of intradermal, intranasal, or subcutaneous administration. Hamsters were protected against severe weight loss and lung pathology and had reduced oropharyngeal and lung virus titers. Protection against weight loss and histopathology by the vaccine, which in mice induces splenic and lung cell interferon gamma in response to N protein stimulation, was correlated in hamsters with pre-challenge serum anti-N TH1-biased IgG (IgG2/3). Thus, rLVS ΔcapB/MN has potential as an oral universal COVID-19 vaccine. IMPORTANCE The COVID-19 pandemic continues to rage into its fourth year worldwide. To protect the world's population most effectively from severe disease, hospitalization, and death, a vaccine is needed that is resistant to rapidly emerging viral variants of the causative agent SARS-CoV-2, inexpensive to manufacture, store, and transport, and easy to administer. Ideally, such a vaccine would be capable of oral administration, especially in resource-poor countries of the world where there are shortages of needles, syringes and trained personnel to administer injectable vaccines. Here, we show that oral administration of a bacterium-vectored vaccine meeting all these criteria protects naturally susceptible Syrian hamsters from severe COVID-19-like disease, including severe weight loss and lung pathology, after high-dose SARS-CoV-2 respiratory challenge. As the vaccine is based upon inducing immunity to highly conserved SARS-CoV-2 membrane and nucleocapsid proteins, as opposed to the rapidly mutating Spike protein, it should remain resistant to newly emerging SARS-CoV-2 variants.

10.
PLoS One ; 18(1): e0278862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662705

RESUMO

BACKGROUND: Monkeypox virus has recently emerged from endemic foci in Africa and, since October 20, 2022, more than 73,000 human infections have been reported by the CDC from over 100 countries that historically have not reported monkeypox cases. The detection of virus in skin lesions, blood, semen, and saliva of infected patients with monkeypox infections raises the potential for disease transmission via routes that have not been previously documented, including by blood and plasma transfusions. Methods for protecting the blood supply against the threats of newly emerging disease agents exist and include Pathogen Reduction Technologies (PRT) which utilize photochemical treatment processes to inactivate pathogens in blood while preserving the integrity of plasma and cellular components. Such methods have been employed broadly for over 15 years, but effectiveness of these methods under routine use conditions against monkeypox virus has not been reported. STUDY DESIGN AND METHODS: Monkeypox virus (strain USA_2003) was used to inoculate plasma and whole blood units that were then treated with riboflavin and UV light (Mirasol Pathogen Reduction Technology System, Terumo BCT, Lakewood, CO). The infectious titers of monkeypox virus in the samples before and after riboflavin + UV treatment were determined by plaque assay on Vero cells. RESULTS: The levels of spiked virus present in whole blood and plasma samples exceeded 103 infectious particles per dose, corresponding to greater than 105 DNA copies per mL. Treatment of whole blood and plasma units under standard operating procedures for the Mirasol PRT System resulted in complete inactivation of infectivity to the limits of detection. This is equivalent to a reduction of ≥ 2.86 +/- 0.73 log10 pfu/mL of infectivity in whole blood and ≥ 3.47 +/-0.19 log10 pfu/mL of infectivity in plasma under standard operating conditions for those products. CONCLUSION: Based on this data and corresponding studies on infectivity in patients with monkeypox infections, use of Mirasol PRT would be expected to significantly reduce the risk of transfusion transmission of monkeypox.


Assuntos
Monkeypox virus , Mpox , Viremia , Animais , Humanos , Plaquetas , Chlorocebus aethiops , Mpox/sangue , Mpox/complicações , Mpox/virologia , Riboflavina/farmacologia , Raios Ultravioleta , Células Vero , Viremia/virologia
11.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36560407

RESUMO

Virus-like particles (VLPs) offer great potential as a safe and effective vaccine platform against SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 VLPs can be generated by expression of the four viral structural proteins in a mammalian expression system. Immunization of mice with a monovalent VLP vaccine elicited a potent humoral response, showing neutralizing activity against multiple variants of SARS-CoV-2. Subsequent immunogenicity and efficacy studies were performed in the Golden Syrian hamster model, which closely resembles the pathology and progression of COVID-19 in humans. Hamsters immunized with a bivalent VLP vaccine were significantly protected from infection with the Beta or Delta variant of SARS-CoV-2. Vaccinated hamsters showed reduced viral load, shedding, replication, and pathology in the respiratory tract. Immunized hamsters also showed variable levels of cross-neutralizing activity against the Omicron variant. Overall, the VLP vaccine elicited robust protective efficacy against SARS-CoV-2. These promising results warrant further study of multivalent VLP vaccines in Phase I clinical trials in humans.

12.
Sci Adv ; 8(49): eabq6527, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475798

RESUMO

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolves to escape natural antibodies, it also loses sensitivity to therapeutic antibody drugs. By contrast, evolution selects for binding to ACE2, the cell-surface receptor required for SARS-CoV-2 infection. Consistent with this, we find that an ACE2 decoy neutralizes antibody-resistant variants, including Omicron, with no loss in potency. To identify design features necessary for in vivo activity, we compare several enzymatically inactive, Fc effector-silenced ACE2-Fc decoys. Inclusion of the ACE2 collectrin-like domain not only improves affinity for the S protein but also unexpectedly extends serum half-life and is necessary to reduce disease severity and viral titer in Syrian hamsters. Fc effector function is not required. The activity of ACE2 decoy receptors is due, in part, to their ability to trigger an irreversible structural change in the viral S protein. Our studies provide a new understanding of how ACE2 decoys function and support their development as therapeutics to treat ACE2-dependent coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos
14.
PLoS Pathog ; 18(7): e1010691, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862475

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2 , Redução de Peso
15.
Front Immunol ; 13: 901372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651616

RESUMO

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Epitopos de Linfócito T , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Febre Q/prevenção & controle , Linfócitos T
16.
MAbs ; 14(1): 2047144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35289719

RESUMO

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Anticorpos de Domínio Único/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Antivirais/imunologia , Sítios de Ligação/genética , Anticorpos Amplamente Neutralizantes/imunologia , Cricetinae , Modelos Animais de Doenças , Humanos , Mesocricetus , Nebulizadores e Vaporizadores , Ligação Proteica , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
17.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291292

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.

18.
Virology ; 568: 49-55, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114499

RESUMO

West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. We examined potential ways in which alligators may contribute to the natural ecology of WNV. We experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators and that water can serve as a source of infection for alligators but does not easily serve as in intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird-mosquito transmission cycle.


Assuntos
Jacarés e Crocodilos/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , Replicação Viral , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/fisiologia , Animais , Aves/virologia , Chlorocebus aethiops , Reservatórios de Doenças/virologia , Células Vero , Zoonoses Virais , Febre do Nilo Ocidental/virologia
19.
PLoS Negl Trop Dis ; 16(2): e0010172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143500

RESUMO

Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and northern Australia that causes the disease, melioidosis. Although the global genomic diversity of clinical B. pseudomallei isolates has been investigated, there is limited understanding of its genomic diversity across small geographic scales, especially in soil. In this study, we obtained 288 B. pseudomallei isolates from a single soil sample (~100g; intensive site 2, INT2) collected at a depth of 30cm from a site in Ubon Ratchathani Province, Thailand. We sequenced the genomes of 169 of these isolates that represent 7 distinct sequence types (STs), including a new ST (ST1820), based on multi-locus sequence typing (MLST) analysis. A core genome SNP phylogeny demonstrated that all identified STs share a recent common ancestor that diverged an estimated 796-1260 years ago. A pan-genomics analysis demonstrated recombination between clades and intra-MLST phylogenetic and gene differences. To identify potential differential virulence between STs, groups of BALB/c mice (5 mice/isolate) were challenged via subcutaneous injection (500 CFUs) with 30 INT2 isolates representing 5 different STs; over the 21-day experiment, eight isolates killed all mice, 2 isolates killed an intermediate number of mice (1-2), and 20 isolates killed no mice. Although the virulence results were largely stratified by ST, one virulent isolate and six attenuated isolates were from the same ST (ST1005), suggesting that variably conserved genomic regions may contribute to virulence. Genomes from the animal-challenged isolates were subjected to a bacterial genome-wide association study to identify genomic regions associated with differential virulence. One associated region is a unique variant of Hcp1, a component of the type VI secretion system, which may result in attenuation. The results of this study have implications for comprehensive sampling strategies, environmental exposure risk assessment, and understanding recombination and differential virulence in B. pseudomallei.


Assuntos
Burkholderia pseudomallei/isolamento & purificação , Burkholderia pseudomallei/patogenicidade , Melioidose/microbiologia , Filogenia , Microbiologia do Solo , Animais , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/genética , Feminino , Genoma Bacteriano , Genômica , Humanos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Tailândia , Virulência
20.
Mol Ther ; 30(5): 1897-1912, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34990810

RESUMO

RNA vaccines have demonstrated efficacy against SARS-CoV-2 in humans, and the technology is being leveraged for rapid emergency response. In this report, we assessed immunogenicity and, for the first time, toxicity, biodistribution, and protective efficacy in preclinical models of a two-dose self-amplifying messenger RNA (SAM) vaccine, encoding a prefusion-stabilized spike antigen of SARS-CoV-2 Wuhan-Hu-1 strain and delivered by lipid nanoparticles (LNPs). In mice, one immunization with the SAM vaccine elicited a robust spike-specific antibody response, which was further boosted by a second immunization, and effectively neutralized the matched SARS-CoV-2 Wuhan strain as well as B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta) variants. High frequencies of spike-specific germinal center B, Th0/Th1 CD4, and CD8 T cell responses were observed in mice. Local tolerance, potential systemic toxicity, and biodistribution of the vaccine were characterized in rats. In hamsters, the vaccine candidate was well-tolerated, markedly reduced viral load in the upper and lower airways, and protected animals against disease in a dose-dependent manner, with no evidence of disease enhancement following SARS-CoV-2 challenge. Therefore, the SARS-CoV-2 SAM (LNP) vaccine candidate has a favorable safety profile, elicits robust protective immune responses against multiple SARS-CoV-2 variants, and has been advanced to phase 1 clinical evaluation (NCT04758962).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Mensageiro , Ratos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA