Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Structure ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106858

RESUMO

Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.

2.
IUCrJ ; 11(Pt 5): 780-791, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008358

RESUMO

The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Šresolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.


Assuntos
Cristalização , Cristalografia por Raios X/métodos , Humanos , Conformação Proteica , Síncrotrons
3.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 451-463, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841886

RESUMO

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.


Assuntos
Halogênios , SARS-CoV-2 , Enxofre , Halogênios/química , Cristalografia por Raios X/métodos , Enxofre/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Humanos , Elétrons , Modelos Moleculares , Desenho de Fármacos , Ligação Proteica , Sítios de Ligação , COVID-19
4.
Nat Commun ; 14(1): 8248, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086790

RESUMO

The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid ß-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-ß (Aß) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aß toxicity, a hallmark of AD.


Assuntos
Doença de Alzheimer , Complexo I de Transporte de Elétrons , Humanos , Oxirredução , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
Science ; 381(6663): 1217-1225, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708276

RESUMO

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.


Assuntos
MAP Quinase Quinase 2 , MAP Quinase Quinase 6 , Proteína Quinase 14 Ativada por Mitógeno , Microscopia Crioeletrônica , Ativação Enzimática , MAP Quinase Quinase 2/química , MAP Quinase Quinase 6/química , Proteína Quinase 14 Ativada por Mitógeno/química , Fosforilação , Especificidade por Substrato , Conformação Proteica
6.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446375

RESUMO

The identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands. Significantly less is even known about multiple binding orientations for fragments (<300 Da), although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design. Here, we use recently reported fragment hits for the SARS-CoV-2 non-structural protein 1 (nsp1) N-terminal domain to propose a general procedure for unambiguously identifying binding orientations of 2-dimensional fragments containing either sulphur or chloro substituents within the wavelength range of most tunable beamlines. By measuring datasets at two energies, using a tunable beamline operating in vacuum and optimised for data collection at very low X-ray energies, we show that the anomalous signal can be used to identify multiple orientations in small fragments containing sulphur and/or chloro substituents or to verify recently reported conformations. Although in this specific case we identified the positions of sulphur and chlorine in fragments bound to their protein target, we are confident that this work can be further expanded to additional atoms or ions which often occur in fragments. Finally, our improvements in the understanding of binding orientations will also serve to improve the rational optimisation of SARS-CoV-2 nsp1 fragment hits.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Elétrons , Ligantes , Síncrotrons
7.
J Am Chem Soc ; 145(19): 10445-10450, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155687

RESUMO

mRNA display of macrocyclic peptides has proven itself to be a powerful technique to discover high-affinity ligands for a protein target. However, only a limited number of cyclization chemistries are known to be compatible with mRNA display. Tyrosinase is a copper-dependent oxidase that oxidizes tyrosine phenol to an electrophilic o-quinone, which is readily attacked by cysteine thiol. Here we show that peptides containing tyrosine and cysteine are rapidly cyclized upon tyrosinase treatment. Characterization of the cyclization reveals it to be widely applicable to multiple macrocycle sizes and scaffolds. We combine tyrosinase-mediated cyclization with mRNA display to discover new macrocyclic ligands targeting melanoma-associated antigen A4 (MAGE-A4). These macrocycles potently inhibit the MAGE-A4 binding axis with nanomolar IC50 values. Importantly, macrocyclic ligands show clear advantage over noncyclized analogues with ∼40-fold or greater decrease in IC50 values.


Assuntos
Cisteína , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/metabolismo , Cisteína/metabolismo , RNA Mensageiro/metabolismo , Ligantes , Peptídeos/química , Tirosina/metabolismo , Catálise , Ciclização
8.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 374-386, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039669

RESUMO

The polymorphism of human insulin upon pH variation was characterized via X-ray powder diffraction, employing a crystallization protocol previously established for co-crystallization with phenolic derivatives. Two distinct rhombohedral (R3) polymorphs and one cubic (I213) polymorph were identified with increasing pH, corresponding to the T6, T3R3f and T2 conformations of insulin, respectively. The structure of the cubic T2 polymorph was determined via multi-profile stereochemically restrained Rietveld refinement at 2.7 Šresolution. This constitutes the first cubic insulin structure to be determined from crystals grown in the presence of zinc ions, although no zinc binding was observed. The differences of the polycrystalline variant from other cubic insulin structures, as well as the nature of the pH-driven phase transitions, are discussed in detail.


Assuntos
Insulina Regular Humana , Insulina , Humanos , Insulina/química , Difração de Raios X , Fenóis , Cristalização
9.
ACS Chem Biol ; 18(1): 166-175, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36490372

RESUMO

mRNA display is a powerful, high-throughput technology for discovering novel, peptide ligands for protein targets. A number of methods have been used to expand the chemical diversity of mRNA display libraries beyond the 20 canonical amino acids, including genetic code reprogramming and biorthogonal chemistries. To date, however, there have been few reports using enzymes as biocompatible reagents for diversifying mRNA display libraries. Here, we report the evaluation and implementation of the common industrial enzyme, microbial transglutaminase (mTG), as a versatile biocatalyst for cyclization of mRNA display peptide libraries via lysine-to-glutamine isopeptide bonds. We establish two separate display-based assays to validate the compatibility of mTG with mRNA-linked peptide substrates. These assays indicate that mTG has a high degree of substrate tolerance and low single round bias. To demonstrate the potential benefits of mTG-mediated cyclization in ligand discovery, high diversity mTG-modified libraries were employed in two separate affinity selections: (1) one against the calcium and integrin binding protein, CIB1, and (2) the second against the immune checkpoint protein and emerging therapeutic target, B7-H3. Both selections resulted in the identification of potent, cyclic, low nanomolar binders, and subsequent structure-activity studies demonstrate the importance of the cyclization to the observed activity. Notably, cyclization in the CIB1 binder stabilizes an α-helical conformation, while the B7-H3 inhibitor employs two bridges, one mTG-derived lactam and a second disulfide to achieve its potency. Together, these results demonstrate potential benefits of enzyme-based biocatalysts in mRNA display ligand selections and establish a framework for employing mTG in mRNA display.


Assuntos
Biblioteca de Peptídeos , Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ligantes , Proteínas/metabolismo , Ligação Proteica , Transglutaminases/genética , Transglutaminases/química , Transglutaminases/metabolismo
10.
J Biol Chem ; 299(1): 102769, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470427

RESUMO

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Assuntos
Anticorpos , Antígeno B7-1 , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Sítios de Ligação , Cristalografia , Anticorpos/química , Anticorpos/metabolismo
11.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293303

RESUMO

The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 by suppressing its replication or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against the N-terminal domain of SARS-CoV-2 nsp1 identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.99 Å). Binding affinities of hits against nsp1 and potential stabilisation were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal shift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medically relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/metabolismo , Ligantes , Raios X , Sítios de Ligação , Antivirais/farmacologia , Interferons , Fatores de Virulência
12.
Sci Transl Med ; 14(656): eabn3231, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35921477

RESUMO

The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.


Assuntos
Criptosporidiose , Cryptosporidium , Malária Falciparum , Toxoplasma , Inibidores da Angiogênese/uso terapêutico , Animais , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Inibidores de Proteínas Quinases/farmacologia , Spliceossomos , Toxoplasma/genética
13.
Sci Rep ; 12(1): 5353, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354859

RESUMO

Non-ribosomal peptide synthetases (NRPS) are multi-modular/domain enzymes that catalyze the synthesis of bioactive peptides. A crucial step in the process is peptide elongation accomplished by the condensation (C) domain with the aid of a peptidyl carrier or thiolation (T) domain. Here, we examined condensation reaction carried out by NRPS AmbB involved in biosynthesis of L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) in P. aeruginosa. We determined crystal structures of the truncated T-C bidomain of AmbB in three forms, the apo enzyme with disordered T domain, the holo form with serine linked phosphopantetheine (Ppant) and a holo form with substrate (L-alanine) loaded onto Ppant. The two holo forms feature the T domain in a substrate-donation conformation. Mutagenesis combined with functional assays identified residues essential for the attachment of Ppant, anchoring the Ppant-L-Ala in the donor catalytic channel and the role of the conserved His953 in condensation activity. Altogether, these results provide structural insights into the condensation reaction at the donor site with a substrate-bound C domain of AmbB and lay the foundation for understanding the molecular mechanism of condensation which is crucial for AMB synthesis.


Assuntos
Peptídeo Sintases , Domínio Catalítico , Peptídeo Sintases/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína
14.
J Med Chem ; 65(3): 1996-2022, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35044775

RESUMO

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).


Assuntos
Proteínas de Bactérias/metabolismo , Guanidina/análogos & derivados , Mycobacterium tuberculosis/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Ureia/análogos & derivados , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Guanidina/química , Guanidina/metabolismo , Guanidina/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Ureia/química , Ureia/metabolismo , Ureia/farmacologia
16.
Front Immunol ; 12: 678570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211469

RESUMO

Passive immunization using monoclonal antibodies will play a vital role in the fight against COVID-19. The recent emergence of viral variants with reduced sensitivity to some current antibodies and vaccines highlights the importance of broad cross-reactivity. This study describes deep-mining of the antibody repertoires of hospitalized COVID-19 patients using phage display technology and B cell receptor (BCR) repertoire sequencing to isolate neutralizing antibodies and gain insights into the early antibody response. This comprehensive discovery approach has yielded a panel of potent neutralizing antibodies which bind distinct viral epitopes including epitopes conserved in SARS-CoV-1. Structural determination of a non-ACE2 receptor blocking antibody reveals a previously undescribed binding epitope, which is unlikely to be affected by the mutations in any of the recently reported major viral variants including B.1.1.7 (from the UK), B.1.351 (from South Africa) and B.1.1.28 (from Brazil). Finally, by combining sequences of the RBD binding and neutralizing antibodies with the B cell receptor repertoire sequencing, we also describe a highly convergent early antibody response. Similar IgM-derived sequences occur within this study group and also within patient responses described by multiple independent studies published previously.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Mineração de Dados/métodos , Epitopos/imunologia , Humanos , Imunização Passiva/métodos , Soroterapia para COVID-19
17.
Elife ; 102021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34263725

RESUMO

Correct 3'end processing of mRNAs is one of the regulatory cornerstones of gene expression. In a parasite that must adapt to the regulatory requirements of its multi-host life style, there is a need to adopt additional means to partition the distinct transcriptional signatures of the closely and tandemly arranged stage-specific genes. In this study, we report our findings in T. gondii of an m6A-dependent 3'end polyadenylation serving as a transcriptional barrier at these loci. We identify the core polyadenylation complex within T. gondii and establish CPSF4 as a reader for m6A-modified mRNAs, via a YTH domain within its C-terminus, a feature which is shared with plants. We bring evidence of the specificity of this interaction both biochemically, and by determining the crystal structure at high resolution of the T. gondii CPSF4-YTH in complex with an m6A-modified RNA. We show that the loss of m6A, both at the level of its deposition or its recognition is associated with an increase in aberrantly elongated chimeric mRNAs emanating from impaired transcriptional termination, a phenotype previously noticed in the plant model Arabidopsis thaliana. Nanopore direct RNA sequencing shows the occurrence of transcriptional read-through breaching into downstream repressed stage-specific genes, in the absence of either CPSF4 or the m6A RNA methylase components in both T. gondii and A. thaliana. Taken together, our results shed light on an essential regulatory mechanism coupling the pathways of m6A metabolism directly to the cleavage and polyadenylation processes, one that interestingly seem to serve, in both T. gondii and A. thaliana, as a guardian against aberrant transcriptional read-throughs.


Assuntos
Genes Controladores do Desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Poliadenilação , Toxoplasma/metabolismo , Transcriptoma , Arabidopsis/genética , Sítios de Ligação , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Regulação da Expressão Gênica , Humanos , Glicoproteínas de Membrana/química , Metiltransferases/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Fatores de Processamento de RNA/química , RNA Mensageiro/metabolismo , Leitura , Análise de Sequência de RNA , Dedos de Zinco
18.
Biosci Rep ; 40(3)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32068790

RESUMO

FAH domain containing protein 1 (FAHD1) is a mammalian mitochondrial protein, displaying bifunctionality as acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. We report the crystal structure of mouse FAHD1 and structural mapping of the active site of mouse FAHD1. Despite high structural similarity with human FAHD1, a rabbit monoclonal antibody (RabMab) could be produced that is able to recognize mouse FAHD1, but not the human form, whereas a polyclonal antibody recognized both proteins. Epitope mapping in combination with our deposited crystal structures revealed that the epitope overlaps with a reported SIRT3 deacetylation site in mouse FAHD1.


Assuntos
Hidrolases/genética , Acetoacetatos/metabolismo , Animais , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Mapeamento de Epitopos/métodos , Humanos , Hidrolases/química , Hidrolases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Relação Estrutura-Atividade
19.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1071-1083, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793901

RESUMO

Afamin, which is a human blood plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome, poses multiple challenges for crystallographic structure determination, both practically and in analysis of the models. Several hundred crystals were analysed, and an unusual variability in cell volume and difficulty in solving the structure despite an ∼34% sequence identity with nonglycosylated human serum albumin indicated that the molecule exhibits variable and context-sensitive packing, despite the simplified glycosylation in insect cell-expressed recombinant afamin. Controlled dehydration of the crystals was able to stabilize the orthorhombic crystal form, reducing the number of molecules in the asymmetric unit from the monoclinic form and changing the conformational state of the protein. An iterative strategy using fully automatic experiments available on MASSIF-1 was used to quickly determine the optimal protocol to achieve the phase transition, which should be readily applicable to many types of sample. The study also highlights the drawback of using a single crystallographic structure model for computational modelling purposes given that the conformational state of the binding sites and the electron density in the binding site, which is likely to result from PEGs, greatly varies between models. This also holds for the analysis of nonspecific low-affinity ligands, where often a variety of fragments with similar uncertainty can be modelled, inviting interpretative bias. As a promiscuous transporter, afamin also seems to bind gadoteridol, a magnetic resonance imaging contrast compound, in at least two sites. One pair of gadoteridol molecules is located near the human albumin Sudlow site, and a second gadoteridol molecule is located at an intermolecular site in proximity to domain IA. The data from the co-crystals support modern metrics of data quality in the context of the information that can be gleaned from data sets that would be abandoned on classical measures.


Assuntos
Proteínas de Transporte/química , Cristalização/métodos , Dessecação/métodos , Glicoproteínas/química , Albumina Sérica Humana/química , Sítios de Ligação , Gadolínio/química , Compostos Heterocíclicos/química , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Compostos Organometálicos/química , Conformação Proteica
20.
IUCrJ ; 6(Pt 5): 822-831, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576216

RESUMO

The fully automatic processing of crystals of macromolecules has presented a unique opportunity to gather information on the samples that is not usually recorded. This has proved invaluable in improving sample-location, characterization and data-collection algorithms. After operating for four years, MASSIF-1 has now processed over 56 000 samples, gathering information at each stage, from the volume of the crystal to the unit-cell dimensions, the space group, the quality of the data collected and the reasoning behind the decisions made in data collection. This provides an unprecedented opportunity to analyse these data together, providing a detailed landscape of macromolecular crystals, intimate details of their contents and, importantly, how the two are related. The data show that mosaic spread is unrelated to the size or shape of crystals and demonstrate experimentally that diffraction intensities scale in proportion to crystal volume and molecular weight. It is also shown that crystal volume scales inversely with molecular weight. The results set the scene for the development of X-ray crystallography in a changing environment for structural biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA