Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(27): e2402422121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923984

RESUMO

Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.


Assuntos
Acinetobacter baumannii , Dano ao DNA , DNA Glicosilases , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/metabolismo , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Reparo do DNA , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/patologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Camundongos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Virulência , Escherichia coli/genética , Escherichia coli/metabolismo
2.
DNA Repair (Amst) ; 139: 103680, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663144

RESUMO

Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.


Assuntos
DNA Glicosilases , Reparo do DNA , Humanos , DNA Glicosilases/metabolismo , DNA Glicosilases/química , Especificidade por Substrato , DNA/metabolismo , Dano ao DNA , Animais , Replicação do DNA , N-Glicosil Hidrolases
3.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491139

RESUMO

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Assuntos
Microscopia Crioeletrônica , DNA Polimerase I , DNA Primase , Replicação do DNA , Modelos Moleculares , Xenopus laevis , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/genética , DNA Polimerase I/metabolismo , DNA Polimerase I/química , Animais , Domínio Catalítico , DNA/metabolismo , DNA/química , DNA/biossíntese , Primers do DNA/metabolismo , Primers do DNA/genética , RNA/metabolismo , RNA/química , Conformação Proteica
4.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961428

RESUMO

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes, but their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected, dual role for the dsDNA translocase HLTF in G4 metabolism. First, we find that HLTF is enriched at G4s in the human genome and suppresses G4 accumulation throughout the cell cycle using its ATPase activity. This function of HLTF affects telomere maintenance by restricting alternative lengthening of telomeres, a process stimulated by G4s. We also show that HLTF and MSH2, a mismatch repair factor that binds G4s, act in independent pathways to suppress G4s and to promote resistance to G4 stabilization. In a second, distinct role, HLTF restrains DNA synthesis upon G4 stabilization by suppressing PrimPol-dependent repriming. Together, the dual functions of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.

5.
Cell Rep ; 42(11): 113427, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37950866

RESUMO

Abasic sites are common DNA lesions stalling polymerases and threatening genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by 5-hydroxymethyl cytosine, embryonic stem cell (ESC)-specific (HMCES) via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, HMCES-DPCs must be removed to complete DNA repair. Here, we find that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 h. HMCES can catalyze its own DPC self-reversal reaction, which is dependent on glutamate 127 and is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated in cells, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP (apurinic/apyrimidinic) site formation. In these circumstances, proteolysis may become an important mechanism of HMCES-DPC resolution. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.


Assuntos
Dano ao DNA , Proteínas , Proteínas/genética , Replicação do DNA , Reparo do DNA , DNA/genética , DNA de Cadeia Simples
6.
J Mol Biol ; 435(24): 168330, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37884206

RESUMO

DNA replication in eukaryotes relies on the synthesis of a ∼30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ∼20 nucleotides of DNA. Here, we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the surprisingly low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.


Assuntos
DNA Primase , RNA , Humanos , DNA Primase/metabolismo , Primers do DNA , Replicação do DNA , RNA/metabolismo
7.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577606

RESUMO

DNA replication in eukaryotes relies on the synthesis of a ~30-nucleotide RNA/DNA primer strand through the dual action of the heterotetrameric polymerase α-primase (pol-prim) enzyme. Synthesis of the 7-10-nucleotide RNA primer is regulated by the C-terminal domain of the primase regulatory subunit (PRIM2C) and is followed by intramolecular handoff of the primer to pol α for extension by ~20 nucleotides of DNA. Here we provide evidence that RNA primer synthesis is governed by a combination of the high affinity and flexible linkage of the PRIM2C domain and the low affinity of the primase catalytic domain (PRIM1) for substrate. Using a combination of small angle X-ray scattering and electron microscopy, we found significant variability in the organization of PRIM2C and PRIM1 in the absence and presence of substrate, and that the population of structures with both PRIM2C and PRIM1 in a configuration aligned for synthesis is low. Crosslinking was used to visualize the orientation of PRIM2C and PRIM1 when engaged by substrate as observed by electron microscopy. Microscale thermophoresis was used to measure substrate affinities for a series of pol-prim constructs, which showed that the PRIM1 catalytic domain does not bind the template or emergent RNA-primed templates with appreciable affinity. Together, these findings support a model of RNA primer synthesis in which generation of the nascent RNA strand and handoff of the RNA-primed template from primase to polymerase α is mediated by the high degree of inter-domain flexibility of pol-prim, the ready dissociation of PRIM1 from its substrate, and the much higher affinity of the POLA1cat domain of polymerase α for full-length RNA-primed templates.

8.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398432

RESUMO

Abasic sites are common DNA lesions that stall polymerases and threaten genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by HMCES via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, the HMCES-DPC must be removed to complete DNA repair. Here, we found that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 hours. Resolution does not require the proteasome or SPRTN protease. Instead, HMCES-DPC self-reversal is important for resolution. Biochemically, self-reversal is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP site formation. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.

9.
Curr Opin Struct Biol ; 81: 102618, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269798

RESUMO

The replication machinery frequently encounters DNA damage and other structural impediments that inhibit progression of the replication fork. Replication-coupled processes that remove or bypass the barrier and restart stalled forks are essential for completion of replication and for maintenance of genome stability. Errors in replication-repair pathways lead to mutations and aberrant genetic rearrangements and are associated with human diseases. This review highlights recent structures of enzymes involved in three replication-repair pathways: translesion synthesis, template switching and fork reversal, and interstrand crosslink repair.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Replicação do DNA , Mutação , Instabilidade Genômica
10.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37119805

RESUMO

Telomere healing occurs when telomerase, normally restricted to chromosome ends, acts upon a double-strand break to create a new, functional telomere. De novo telomere addition (dnTA) on the centromere-proximal side of a break truncates the chromosome but, by blocking resection, may allow the cell to survive an otherwise lethal event. We previously identified several sequences in the baker's yeast, Saccharomyces cerevisiae, that act as hotspots of dnTA [termed Sites of Repair-associated Telomere Addition (SiRTAs)], but the distribution and functional relevance of SiRTAs is unclear. Here, we describe a high-throughput sequencing method to measure the frequency and location of telomere addition within sequences of interest. Combining this methodology with a computational algorithm that identifies SiRTA sequence motifs, we generate the first comprehensive map of telomere-addition hotspots in yeast. Putative SiRTAs are strongly enriched in subtelomeric regions where they may facilitate formation of a new telomere following catastrophic telomere loss. In contrast, outside of subtelomeres, the distribution and orientation of SiRTAs appears random. Since truncating the chromosome at most SiRTAs would be lethal, this observation argues against selection for these sequences as sites of telomere addition per se. We find, however, that sequences predicted to function as SiRTAs are significantly more prevalent across the genome than expected by chance. Sequences identified by the algorithm bind the telomeric protein Cdc13, raising the possibility that association of Cdc13 with single-stranded regions generated during the response to DNA damage may facilitate DNA repair more generally.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Reparo do DNA , Telomerase/genética , Telomerase/metabolismo
11.
Nucleic Acids Res ; 51(6): 2838-2849, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36881763

RESUMO

TatD enzymes are evolutionarily conserved deoxyribonucleases associated with DNA repair, apoptosis, development, and parasite virulence. Three TatD paralogs exist in humans, but their nuclease functions are unknown. Here, we describe the nuclease activities of two of the three human TatD paralogs, TATDN1 and TATDN3, which represent two phylogenetically distinct clades based on unique active site motifs. We found that in addition to 3'-5' exonuclease activity associated with other TatD proteins, both TATDN1 and TATDN3 exhibited apurinic/apyrimidinic (AP) endonuclease activity. The AP endonuclease activity was observed only in double-stranded DNA, whereas exonuclease activity was operative primarily in single-stranded DNA. Both nuclease activities were observed in the presence of Mg2+ or Mn2+, and we identified several divalent metal cofactors that inhibited exonuclease and supported AP endonuclease activity. Biochemical analysis and a crystal structure of TATDN1 bound to 2'-deoxyadenosine 5'-monophosphate in the active site are consistent with two-metal ion catalysis, and we identify several residues that differentiate nuclease activities in the two proteins. In addition, we show that the three Escherichia coli TatD paralogs are also AP endonucleases, indicating that this activity is conserved across evolution. Together, these results indicate that TatD enzymes constitute a family of ancient AP endonucleases.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Exonucleases , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Escherichia coli/metabolismo , Exonucleases/metabolismo
12.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993206

RESUMO

Telomere healing occurs when telomerase, normally restricted to chromosome ends, acts upon a double-strand break to create a new, functional telomere. De novo telomere addition on the centromere-proximal side of a break truncates the chromosome but, by blocking resection, may allow the cell to survive an otherwise lethal event. We previously identified several sequences in the baker’s yeast, Saccharomyces cerevisiae , that act as hotspots of de novo telomere addition (termed Sites of Repair-associated Telomere Addition or SiRTAs), but the distribution and functional relevance of SiRTAs is unclear. Here, we describe a high-throughput sequencing method to measure the frequency and location of telomere addition within sequences of interest. Combining this methodology with a computational algorithm that identifies SiRTA sequence motifs, we generate the first comprehensive map of telomere-addition hotspots in yeast. Putative SiRTAs are strongly enriched in subtelomeric regions where they may facilitate formation of a new telomere following catastrophic telomere loss. In contrast, outside of subtelomeres, the distribution and orientation of SiRTAs appears random. Since truncating the chromosome at most SiRTAs would be lethal, this observation argues against selection for these sequences as sites of telomere addition per se. We find, however, that sequences predicted to function as SiRTAs are significantly more prevalent across the genome than expected by chance. Sequences identified by the algorithm bind the telomeric protein Cdc13, raising the possibility that association of Cdc13 with single-stranded regions generated during the response to DNA damage may facilitate DNA repair more generally.

13.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36993335

RESUMO

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.

14.
Cell Rep ; 42(2): 112109, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807139

RESUMO

Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.


Assuntos
Cromatina , Replicação do DNA , Animais , DNA/metabolismo , Xenopus laevis
15.
J Biol Chem ; 298(9): 102307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934051

RESUMO

Apurinic/apyrimidinic (AP, or abasic) sites in DNA are one of the most common forms of DNA damage. AP sites are reactive and form cross-links to both proteins and DNA, are prone to strand breakage, and inhibit DNA replication and transcription. The replication-associated AP site repair protein HMCES protects cells from strand breaks, inhibits mutagenic translesion synthesis, and participates in repair of interstrand DNA cross-links derived from AP sites by forming a stable thiazolidine DNA-protein cross-link (DPC) to AP sites in single-stranded DNA (ssDNA). Despite the importance of HMCES to genome maintenance and the evolutionary conservation of its catalytic SRAP (SOS Response Associated Peptidase) domain, the enzymatic mechanisms of DPC formation and resolution are unknown. Using the bacterial homolog YedK, we show that the SRAP domain catalyzes conversion of the AP site to its reactive, ring-opened aldehyde form, and we provide structural evidence for the Schiff base intermediate that forms prior to the more stable thiazolidine. We also report two new activities, whereby SRAP reacts with polyunsaturated aldehydes at DNA 3'-ends generated by bifunctional DNA glycosylases and catalyzes direct reversal of the DPC to regenerate the AP site, the latter of which we observe in both YedK and HMCES-SRAP proteins. Taken together, this work provides insights into possible mechanisms by which HMCES DPCs are resolved in cells.


Assuntos
DNA Glicosilases , DNA de Cadeia Simples , Aldeídos , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/genética , Resposta SOS em Genética , Bases de Schiff , Tiazolidinas
16.
BMJ Open ; 12(4): e058728, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477877

RESUMO

INTRODUCTION: The purpose of the study is to assess the effectiveness of video consultations in patients with type 1 diabetes mellitus (DM) treated with insulin pumps in the outpatient clinic. METHODS AND ANALYSIS: A 52 weeks' duration, open-label, randomised controlled trial will be conducted, enrolling 100 patients with type 1 DM currently treated with insulin pump.Patients will be recruited from the diabetes outpatient clinic at Hospital of Southern Jutland, Department of internal medicine, Sønderborg. Participants will be randomised to either video consultations (experimental intervention) or standard care (control comparator). Participants in the video consultation group will follow their standard care treatment but will have all of their scheduled and non-scheduled appointments by video consultation. The control group will follow their standard care treatment as usual, having all their appointments at the outpatient centre. Primary outcome will be change from baseline of time in range (3.9-10.0 mmol/L). ETHICS AND DISSEMINATION: The study has been approved by the Regional Committe on Health Research Ethics for Southern Denmark, S-20200039G Acadre 20/12922. We will present the results of the trial at international conferences as well as publish the results of the trial in (a) peer-reviewed scientific journal(s). TRIAL REGISTRATION NUMBER: NCT04612933.


Assuntos
Diabetes Mellitus Tipo 1 , Consulta Remota , Instituições de Assistência Ambulatorial , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Insulina/uso terapêutico , Sistemas de Infusão de Insulina , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
mBio ; 13(2): e0329721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311535

RESUMO

Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from Streptomyces and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes-one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins-and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. IMPORTANCE Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although Streptomyces produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential.


Assuntos
Produtos Biológicos , DNA Glicosilases , Streptomyces , Alquilantes , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , DNA , Adutos de DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Mutagênicos , Streptomyces/genética , Streptomyces/metabolismo
18.
Nucleic Acids Res ; 50(5): 2417-2430, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35191495

RESUMO

Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases-TxnU2, TxnU4, LldU1 and LldU5-important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.


Assuntos
Adutos de DNA , DNA Glicosilases , Aminoglicosídeos , Antibacterianos/farmacologia , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA
19.
Nat Commun ; 12(1): 6942, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836957

RESUMO

Microbes produce a broad spectrum of antibiotic natural products, including many DNA-damaging genotoxins. Among the most potent of these are DNA alkylating agents in the spirocyclopropylcyclohexadienone (SCPCHD) family, which includes the duocarmycins, CC-1065, gilvusmycin, and yatakemycin. The yatakemycin biosynthesis cluster in Streptomyces sp. TP-A0356 contains an AlkD-related DNA glycosylase, YtkR2, that serves as a self-resistance mechanism against yatakemycin toxicity. We previously reported that AlkD, which is not present in an SCPCHD producer, provides only limited resistance against yatakemycin. We now show that YtkR2 and C10R5, a previously uncharacterized homolog found in the CC-1065 biosynthetic gene cluster of Streptomyces zelensis, confer far greater resistance against their respective SCPCHD natural products. We identify a structural basis for substrate specificity across gene clusters and show a correlation between in vivo resistance and in vitro enzymatic activity indicating that reduced product affinity-not enhanced substrate recognition-is the evolutionary outcome of selective pressure to provide self-resistance against yatakemycin and CC-1065.


Assuntos
Antibacterianos/metabolismo , Reparo do DNA , Duocarmicinas/metabolismo , Mutagênicos/metabolismo , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Família Multigênica , Streptomyces/metabolismo
20.
Methods Enzymol ; 661: xvii-xix, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776226
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA