Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Front Pharmacol ; 14: 1128562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560472

RESUMO

Drug-induced Behavioral Signature Analysis (DBSA), is a machine learning (ML) method for in silico screening of compounds, inspired by analytical methods quantifying gene enrichment in genomic analyses. When applied to behavioral data it can identify drugs that can potentially reverse in vivo behavioral symptoms in animal models of human disease and suggest new hypotheses for drug discovery and repurposing. We present a proof-of-concept study aiming to assess Drug-induced Behavioral Signature Analysis (DBSA) as a systematic approach for drug discovery for rare disorders. We applied Drug-induced Behavioral Signature Analysis to high-content behavioral data obtained with SmartCube®, an automated in vivo phenotyping platform. The therapeutic potential of several dozen approved drugs was assessed for phenotypic reversal of the behavioral profile of a Huntington's Disease (HD) murine model, the Q175 heterozygous knock-in mice. The in silico Drug-induced Behavioral Signature Analysis predictions were enriched for drugs known to be effective in the symptomatic treatment of Huntington's Disease, including bupropion, modafinil, methylphenidate, and several SSRIs, as well as the atypical antidepressant tianeptine. To validate the method, we tested acute and chronic effects of tianeptine (20 mg/kg, i. p.) in vivo, using Q175 mice and wild type controls. In both experiments, tianeptine significantly rescued the behavioral phenotype assessed with the SmartCube® platform. Our target-agnostic method thus showed promise for identification of symptomatic relief treatments for rare disorders, providing an alternative method for hypothesis generation and drug discovery for disorders with huge disease burden and unmet medical needs.

2.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36278490

RESUMO

We have developed an inducible Huntington's disease (HD) mouse model that allows temporal control of whole-body allele-specific mutant huntingtin (mHtt) expression. We asked whether moderate global lowering of mHtt (~50%) was sufficient for long-term amelioration of HD-related deficits and, if so, whether early mHtt lowering (before measurable deficits) was required. Both early and late mHtt lowering delayed behavioral dysfunction and mHTT protein aggregation, as measured biochemically. However, long-term follow-up revealed that the benefits, in all mHtt-lowering groups, attenuated by 12 months of age. While early mHtt lowering attenuated cortical and striatal transcriptional dysregulation evaluated at 6 months of age, the benefits diminished by 12 months of age, and late mHtt lowering did not ameliorate striatal transcriptional dysregulation at 12 months of age. Only early mHtt lowering delayed the elevation in cerebrospinal fluid neurofilament light chain that we observed in our model starting at 9 months of age. As small-molecule HTT-lowering therapeutics progress to the clinic, our findings suggest that moderate mHtt lowering allows disease progression to continue, albeit at a slower rate, and could be relevant to the degree of mHTT lowering required to sustain long-term benefits in humans.


Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Lactente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Agregados Proteicos , Proteína Huntingtina/genética , Proteína Huntingtina/líquido cefalorraquidiano , Modelos Animais de Doenças , Corpo Estriado/metabolismo , Progressão da Doença
3.
Epilepsy Res ; 181: 106890, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35219048

RESUMO

Tuberous sclerosis complex (TSC) is a monogenic disorder characterized by hyperactivation of the mTOR signaling pathway and developmental brain malformations leading to intractable epilepsy. Although treatment with the recently approved mTOR inhibitor, everolimus, results in clinically relevant seizure suppression in up to 40% of TSC patients, seizures remain uncontrolled in a large number of cases, underscoring the need to identify novel treatment targets. The MEK-ERK signaling pathway has been found to be aberrantly activated in TSC and inhibition of MEK-ERK activity independently of mTOR rescued neuronal dendrite overgrowth in mice modeling TSC neuropathology. Here, we evaluated the efficacy of MEK-ERK inhibition on seizures in two mouse models of TSC. We found that treatment with the MEK inhibitor PD0325901 (mirdametinib) significantly reduced seizure activity in both TSC mouse models. These findings support inhibiting MEK-ERK activity as a potential alternative strategy to treat seizures in TSC.


Assuntos
Esclerose Tuberosa , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Convulsões/tratamento farmacológico , Transdução de Sinais , Esclerose Tuberosa/complicações , Esclerose Tuberosa/tratamento farmacológico
4.
ACS Chem Neurosci ; 12(12): 2247-2253, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34028255

RESUMO

The ability to calculate whether small molecules will cross the blood-brain barrier (BBB) is an important task for companies working in neuroscience drug discovery. For a decade, scientists have relied on relatively simplistic rules such as Pfizer's central nervous system multiparameter optimization models (CNS-MPO) for guidance during the drug selection process. In parallel, there has been a continued development of more sophisticated machine learning models that utilize different molecular descriptors and algorithms; however, these models represent a "black box" and are generally less interpretable. In both cases, these methods predict the ability of small molecules to cross the BBB using the molecular structure information on its own without in vitro or in vivo data. We describe here the implementation of two versions of Pfizer's algorithm (Pf-MPO.v1 and Pf-MPO.v2) and compare it with a Bayesian machine learning model of BBB penetration trained on a data set of 2296 active and inactive compounds using extended connectivity fingerprint descriptors. The predictive ability of these approaches was compared with 40 known CNS active drugs initially used by Pfizer as their positive set for validation of the Pf-MPO.v1 score. 37/40 (92.5%) compounds were predicted as active by the Bayesian model, while only 30/40 (75%) received a desirable Pf-MPO.v1 score ≥4 and 33/40 (82.5%) received a desirable Pf-MPO.v2 score ≥4, suggesting the Bayesian model is more accurate than MPO algorithms. This also indicates machine learning models are more flexible and have better predictive power for BBB penetration than simple rule sets that require multiple, accurate descriptor calculations. Our machine learning model statistics are comparable to recent published studies. We describe the implications of these findings and how machine learning may have a role alongside more interpretable methods.


Assuntos
Barreira Hematoencefálica , Sistema Nervoso Central , Teorema de Bayes , Fármacos do Sistema Nervoso Central , Aprendizado de Máquina
5.
NPJ Digit Med ; 4(1): 53, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742069

RESUMO

Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).

6.
Microbiome ; 9(1): 27, 2021 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-33487169

RESUMO

BACKGROUND: Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS: Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS: This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.


Assuntos
Astronautas , Meio Ambiente Extraterreno , Microbiota , Pele/microbiologia , Voo Espacial , Astronave , Adulto , Ambiente Construído , Feminino , Havaí , Humanos , Masculino , Microbiota/genética , RNA Ribossômico 16S/genética
7.
Neuropharmacology ; 180: 108297, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890589

RESUMO

Mechanistic target of rapamycin (mTOR) regulates cell proliferation, growth and survival, and is activated in cancer and neurological disorders, including epilepsy. The rapamycin derivative ("rapalog") everolimus, which allosterically inhibits the mTOR pathway, is approved for the treatment of partial epilepsy with spontaneous recurrent seizures (SRS) in individuals with tuberous sclerosis complex (TSC). In contrast to the efficacy in TSC, the efficacy of rapalogs on SRS in other types of epilepsy is equivocal. Furthermore, rapalogs only poorly penetrate into the brain and are associated with peripheral adverse effects, which may compromise their therapeutic efficacy. Here we compare the antiseizure efficacy of two novel, brain-permeable ATP-competitive and selective mTORC1/2 inhibitors, PQR620 and PQR626, and the selective dual pan-PI3K/mTORC1/2 inhibitor PQR530 in two mouse models of chronic epilepsy with SRS, the intrahippocampal kainate (IHK) mouse model of acquired temporal lobe epilepsy and Tsc1GFAP CKO mice, a well-characterized mouse model of epilepsy in TSC. During prolonged treatment of IHK mice with rapamycin, everolimus, PQR620, PQR626, or PQR530; only PQR620 exerted a transient antiseizure effect on SRS, at well tolerated doses whereas the other compounds were ineffective. In contrast, all of the examined compounds markedly suppressed SRS in Tsc1GFAP CKO mice during chronic treatment at well tolerated doses. Thus, against our expectation, no clear differences in antiseizure efficacy were found across the three classes of mTOR inhibitors examined in mouse models of genetic and acquired epilepsies. The main advantage of the novel 1,3,5-triazine derivatives is their excellent tolerability compared to rapalogs, which would favor their development as new therapies for TORopathies such as TSC.


Assuntos
Epilepsias Parciais/tratamento farmacológico , Everolimo/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Sirolimo/uso terapêutico , Esclerose Tuberosa/tratamento farmacológico , Animais , Modelos Animais de Doenças , Epilepsias Parciais/fisiopatologia , Everolimo/farmacologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Resultado do Tratamento , Esclerose Tuberosa/fisiopatologia
8.
Genes Brain Behav ; 19(7): e12676, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445272

RESUMO

Phenotyping mouse model systems of human disease has proven to be a difficult task, with frequent poor inter- and intra-laboratory replicability, particularly in behavioral domains such as social and cognitive function. However, establishing robust animal model systems with strong construct validity is of fundamental importance as they are central tools for understanding disease pathophysiology and developing therapeutics. To complete our studies of mouse model systems relevant to autism spectrum disorder (ASD), we present a replication of the main findings from our two published studies of five genetic mouse model systems of ASD. To assess the intra-laboratory robustness of previous results, we chose the two model systems that showed the greatest phenotypic differences, the Shank3/F and Cntnap2, and repeated assessments of general health, activity and social behavior. We additionally explored all five model systems in the same framework, comparing all results obtained in this three-yearlong effort using informatics techniques to assess commonalities and differences. Our results showed high intra-laboratory replicability of results, even for those with effect sizes that were not particularly large, suggesting that discrepancies in the literature may be dependent on subtle but pivotal differences in testing conditions, housing enrichment, or background strains and less so on the variability of the behavioral phenotypes. The overall informatics analysis suggests that in our behavioral assays we can separate the set of tested mouse model system into two main classes that in some aspects lie on opposite ends of the behavioral spectrum, supporting the view that autism is not a unitary concept.


Assuntos
Transtorno do Espectro Autista/genética , Comportamento Animal , Modelos Animais de Doenças , Informática/métodos , Animais , Transtorno do Espectro Autista/fisiopatologia , Peso Corporal , Feminino , Informática/normas , Aprendizagem , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Reprodutibilidade dos Testes , Comportamento Social
9.
Nat Commun ; 7: 11758, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273432

RESUMO

The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder.


Assuntos
Doença de Huntington/patologia , Neuroglia/patologia , Animais , Comportamento Animal , Quimera/metabolismo , Cognição , Cruzamentos Genéticos , Progressão da Doença , Feminino , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Atividade Motora , Neostriado/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Fenótipo , Transplante de Células-Tronco , Análise de Sobrevida
10.
J Cell Sci ; 128(22): 4138-50, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519478

RESUMO

Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility. Plectin-deficient endothelial cell layers were more leaky and showed reduced mechanical resilience in fluid-shear stress and mechanical stretch experiments. We suggest that the distorted AJs and upregulated actin stress fibres in plectin-deficient cells are rooted in perturbations of the vimentin cytoskeleton, as similar phenotypes could be mimicked in wild-type cells by disruption of vimentin filaments. In vivo studies in endothelium-restricted conditional plectin-knockout mice revealed significant distortions of AJs in stress-prone aortic arch regions and increased pulmonary vascular leakage. Our study opens a new perspective on cytoskeleton-controlled vascular permeability, where a plectin-organized vimentin scaffold keeps actomyosin contractility 'in-check' and maintains AJ homeostasis.


Assuntos
Actinas/metabolismo , Células Endoteliais/metabolismo , Plectina/metabolismo , Vimentina/metabolismo , Animais , Permeabilidade Capilar , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plectina/genética , Estresse Mecânico
11.
PLoS One ; 10(8): e0134572, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273832

RESUMO

Autism spectrum disorder comprises several neurodevelopmental conditions presenting symptoms in social communication and restricted, repetitive behaviors. A major roadblock for drug development for autism is the lack of robust behavioral signatures predictive of clinical efficacy. To address this issue, we further characterized, in a uniform and rigorous way, mouse models of autism that are of interest because of their construct validity and wide availability to the scientific community. We implemented a broad behavioral battery that included but was not restricted to core autism domains, with the goal of identifying robust, reliable phenotypes amenable for further testing. Here we describe comprehensive findings from two known mouse models of autism, obtained at different developmental stages, using a systematic behavioral test battery combining standard tests as well as novel, quantitative, computer-vision based systems. The first mouse model recapitulates a deletion in human chromosome 16p11.2, found in 1% of individuals with autism. The second mouse model harbors homozygous null mutations in Cntnap2, associated with autism and Pitt-Hopkins-like syndrome. Consistent with previous results, 16p11.2 heterozygous null mice, also known as Del(7Slx1b-Sept1)4Aam weighed less than wild type littermates displayed hyperactivity and no social deficits. Cntnap2 homozygous null mice were also hyperactive, froze less during testing, showed a mild gait phenotype and deficits in the three-chamber social preference test, although less robust than previously published. In the open field test with exposure to urine of an estrous female, however, the Cntnap2 null mice showed reduced vocalizations. In addition, Cntnap2 null mice performed slightly better in a cognitive procedural learning test. Although finding and replicating robust behavioral phenotypes in animal models is a challenging task, such functional readouts remain important in the development of therapeutics and we anticipate both our positive and negative findings will be utilized as a resource for the broader scientific community.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Cromossomos de Mamíferos/genética , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Animais , Animais Recém-Nascidos , Comportamento Animal/fisiologia , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Deleção de Sequência , Vocalização Animal/fisiologia
12.
Molecules ; 20(3): 4492-515, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25764491

RESUMO

We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aß42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aß42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aß peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aß lowering effect in vivo might be related to its lower in vitro potency toward Aß aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Indanos/administração & dosagem , Piperidinas/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Donepezila , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Indanos/química , Indanos/uso terapêutico , Camundongos , Estrutura Molecular , Piperidinas/química , Piperidinas/uso terapêutico
13.
Front Behav Neurosci ; 9: 361, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26793080

RESUMO

Huntington's Disease (HD) is a progressive neurodegenerative disorder that causes motor, cognitive, and psychiatric symptoms. In these experiments, we tested if operant training at an early age affected adult cognitive deficits in the zQ175 KI Het (zQ175) mouse model of HD. In Experiment 1 we trained zQ175 mice in a fixed-ratio/progressive ratio (FR/PR) task to assay learning and motivational deficits. We found pronounced deficits in response rates and task engagement in naïve adult zQ175 mice (32-33 weeks age), while deficits in zQ175 mice trained from 6-7 weeks age were either absent or less severe. When those mice were re-tested as adults, FR/PR performance deficits were absent or otherwise less severe than deficits observed in naïve adult zQ175 relative to wild type (WT) mice. In Experiment 2, we used a Go/No-go operant task to assess the effects of early cognitive testing on response inhibition deficits in zQ175 mice. We found that zQ175 mice that began testing at 7-8 weeks did not exhibit deficits in Go/No-go testing, but when re-tested at 28-29 weeks age exhibited an initial impairment that diminished with training. These transient deficits were nonetheless mild relative to deficits observed among adult zQ175 mice without prior testing experience. In Experiment 3 we trained mice in a two-choice visual discrimination test to evaluate cognitive flexibility. As in prior experiments, we found performance deficits were mild or absent in mice that started training at 6-9 weeks of age, while deficits in naive mice exposed to training at 28-29 weeks were severe. Re-testing mice at 28-29 weeks age, were previously trained starting at 6-9 weeks, revealed that deficits in learning and cognitive flexibility were absent or reduced relative to effects observed in naive adults. In Experiment 4, we tested working memory deficits with a delayed non-match to position (DNMTP) test. Mice with prior experience exhibited mild working memory deficits, with males zQ175 exhibiting no deficits, and females performing significantly worse than WT mice at a single delay interval, whereas naive zQ175 exhibited severe delay-dependent deficits at all intervals exceeding 1 s. In sum, these experiments indicate that CAG-dependent impairments in motivation, motor control, cognitive flexibility, and working memory are sensitive to the environmental enrichment and experience. These findings are of clinical relevance, as HD carrier status can potentially be detected at an early age.

14.
Mov Disord ; 29(11): 1375-90, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25216369

RESUMO

Mouse models of Huntington's disease (HD) recapitulate many aspects of the human disease. These genetically modified mice are powerful tools that are used not only to examine the pathogenesis of the disease, but also to assess the efficacy of potential new treatments. Disappointingly, in the past few years we have seen the success of potential therapies in animal studies, subsequently followed by failure in clinical trials. We discuss here a number of factors that influence the translatability of findings from the preclinical to the clinical realm. In particular, we discuss issues related to sample size, reporting of information regarding experimental protocols and mouse models, assignment to experimental groups, incorporation of cognitive measures for early phases of the disease, environmental enrichment, surrogate measures for survival, and the use of more than one HD mouse model. Although it is reasonable to question the appropriateness of the animal models used, we argue that it is more parsimonious to assume that improvements in experimental design and publication of negative results will lead to improved translatability to the clinic and insights about HD pathophysiology.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/terapia , Pesquisa Translacional Biomédica/métodos , Animais , Transtornos Cognitivos/etiologia , Humanos , Doença de Huntington/complicações , Camundongos
15.
Biochem Biophys Res Commun ; 450(4): 1643-9, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25044109

RESUMO

The serum amyloid A (SAA) family of proteins is encoded by multiple genes, which display allelic variation and a high degree of homology in mammals. The SAA1/2 genes code for non-glycosylated acute-phase SAA1/2 proteins, that may increase up to 1000-fold during inflammation. The SAA4 gene, well characterized in humans (hSAA4) and mice (mSaa4) codes for a SAA4 protein that is glycosylated only in humans. We here report on a previously uncharacterized SAA4 gene (rSAA4) and its product in Rattus norvegicus, the only mammalian species known not to express acute-phase SAA. The exon/intron organization of rSAA4 is similar to that reported for hSAA4 and mSaa4. By performing 5'- and 3'RACE, we identified a 1830-bases containing rSAA4 mRNA (including a GA-dinucleotide tandem repeat). Highest rSAA4 mRNA expression was detected in rat liver. In McA-RH7777 rat hepatoma cells, rSAA4 transcription was significantly upregulated in response to LPS and IL-6 while IL-1α/ß and TNFα were without effect. Luciferase assays with promoter-truncation constructs identified three proximal C/EBP-elements that mediate expression of rSAA4 in McA-RH7777 cells. In line with sequence prediction a 14-kDa non-glycosylated SAA4 protein is abundantly expressed in rat liver. Fluorescence microscopy revealed predominant localization of rSAA4-GFP-tagged fusion protein in the ER.


Assuntos
Proteína Amiloide A Sérica/metabolismo , Animais , Linhagem Celular Tumoral , Fígado/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/genética
16.
Neurosci Biobehav Rev ; 37(9 Pt B): 2149-65, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23994273

RESUMO

The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits.


Assuntos
Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/etiologia , Motivação/fisiologia , Reforço Psicológico , Esquizofrenia/complicações , Animais , Modelos Animais de Doenças , Humanos
17.
J Med Chem ; 56(13): 5495-504, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23734673

RESUMO

A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4ß2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds, 24, 26, and 30, demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline.


Assuntos
Antidepressivos/farmacologia , Ciclopropanos/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Antidepressivos/química , Ligação Competitiva , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Ciclopropanos/química , Ciclopropanos/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Estabilidade de Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Modelos Químicos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Agonistas Nicotínicos/química , Ensaio Radioligante , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Natação/psicologia
18.
J Med Chem ; 55(18): 8028-37, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22928944

RESUMO

Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a cocrystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing selective α4ß2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine a previous model of the human α4ß2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. To validate the potential application of the structure of the Ct-AChBP in the engineering of new α4ß2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogues of compound 5. The most promising compound, 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral end points in the rodent studies.


Assuntos
Comportamento Animal/efeitos dos fármacos , Ciclopropanos/química , Ciclopropanos/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Ciclopropanos/metabolismo , Desenho de Fármacos , Agonismo Parcial de Drogas , Estabilidade de Medicamentos , Flúor/química , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Agonistas Nicotínicos/química , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia , Poliquetos , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Nicotínicos/química , Estereoisomerismo
19.
J Med Chem ; 55(2): 717-24, 2012 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-22171543

RESUMO

Despite their discovery in the early 20th century and intensive study over the last 20 years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4ß2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity while acting as partial agonists at α4ß2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening toward other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4ß2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression.


Assuntos
Antidepressivos/síntese química , Comportamento Animal/efeitos dos fármacos , Agonistas Nicotínicos/síntese química , Receptores Nicotínicos/metabolismo , Animais , Antidepressivos/química , Antidepressivos/farmacologia , Linhagem Celular , Cristalografia por Raios X , Agonismo Parcial de Drogas , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Ensaio Radioligante , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
20.
J Pharmacol Exp Ther ; 335(3): 762-70, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864506

RESUMO

Triple reuptake inhibitors (TRIs) that block the dopamine transporter (DAT), norepinephrine transporter, and serotonin transporter are being developed as a new class of antidepressant that may have better efficacy and fewer side effects compared with traditional antidepressants. We describe a novel TRI, 2-[4-(4-chlorophenyl)-1-methylpiperidin-3-ylmethylsulfanyl]-1-(3-methylpiperidin-1-yl)-ethanone (JZAD-IV-22), that inhibits all three monoamine transporters with approximately equal potency in vitro. (+/-)-1-(3,4-dichlorophenyl)-3-azabicyclo-[3.1.0]hexane hydrochloride (DOV 216,303), a TRI shown to be an effective antidepressant in a clinical trial, shows reuptake inhibition similar to that of JZAD-IV-22 in vitro. Furthermore, both JZAD-IV-22 and DOV 216,303 increase levels of dopamine, norepinephrine, and serotonin in the mouse prefrontal cortex when administered by peripheral injection. JZAD-IV-22 and DOV 216,303 exhibited antidepressant-like efficacy in the mouse forced-swim and tail-suspension tests at doses that increased neurotransmitter levels. Because development of DAT inhibitors could be hindered by abuse liability, both JZAD-IV-22 and DOV 216,303 were compared in two assays that are markers of abuse potential. Both JZAD-IV-22 and DOV 216,303 partially substituted for cocaine in a drug discrimination assay in rats, and high doses of DOV 216,303 produced locomotor sensitization in mice. JZAD-IV-22 showed no evidence of sensitization at any dose tested. These results demonstrate that JZAD-IV-22 is a TRI with antidepressant-like activity similar to that of DOV 216,303. The striking feature that distinguishes the two TRIs is that locomotor sensitization, a common underlying feature of drugs of abuse, is seen with DOV 216,303 but is completely lacking in JZAD-IV-22. These findings may have implications for the potential for abuse liability in humans.


Assuntos
Antidepressivos/farmacologia , Locomoção/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Piperidinas/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Inibidores da Captação Adrenérgica/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Compostos Aza/efeitos adversos , Compostos Aza/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cocaína/farmacologia , Corpo Estriado/citologia , Depressão/prevenção & controle , Discriminação Psicológica , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/uso terapêutico , Elevação dos Membros Posteriores , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/uso terapêutico , Norepinefrina/metabolismo , Piperidinas/uso terapêutico , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Natação , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA