Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(9): 2667-2678, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37030797

RESUMO

OBJECTIVE: Effective dosing of anticoagulants aims to prevent blood clot formation while avoiding hemorrhages. This complex task is challenged by several disturbing factors and drug-effect uncertainties, requesting frequent monitoring and adjustment. Biovariability in drug absorption and action further complicates titration and calls for individualized strategies. In this paper, we propose an adaptive closed-loop control algorithm to assist in warfarin therapy management. METHODS: The controller was designed and tested in silico using an established pharmacometrics model of warfarin, which accounts for inter-subject variability. The control algorithm is an adaptive Model Predictive Control (a-MPC) that leverages a simplified patient model, whose parameters are updated with a Bayesian strategy. Performance was quantitatively evaluated in simulations performed on a population of virtual subjects against an algorithm reproducing medical guidelines (MG) and an MPC controller available in the literature (l-MPC). RESULTS: The proposed a-MPC significantly (p 0.05) lowers rising time (2.8 vs. 4.4 and 11.2 days) and time out of range (3.3 vs. 7.2 and 12.9 days) with respect to both MG and l-MPC, respectively. Adaptivity grants a significantly (p 0.05) lower number of subjects reaching unsafe INR values compared to when this feature is not present (8.9% vs.15% of subjects presenting an overshoot outside the target range and 0.08% vs. 0.28% of subjects reaching dangerous INR values). CONCLUSION: The a-MPC algorithm improve warfarin therapy compared to the benchmark therapies. SIGNIFICANCE: This in-silico validation proves effectiveness of the a-MPC algorithm for anticoagulant administration, paving the way for clinical testing.


Assuntos
Trombose , Varfarina , Humanos , Varfarina/uso terapêutico , Varfarina/farmacologia , Teorema de Bayes , Anticoagulantes/uso terapêutico , Anticoagulantes/farmacologia , Coagulação Sanguínea , Algoritmos
2.
PLoS One ; 16(11): e0259015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793458

RESUMO

In dynamic driving simulators, the experience of operating a vehicle is reproduced by combining visual stimuli generated by graphical rendering with inertial stimuli generated by platform motion. Due to inherent limitations of the platform workspace, inertial stimulation is subject to shortcomings in the form of missing cues, false cues, and/or scaling errors, which negatively affect simulation fidelity. In the present study, we aim at quantifying the relative contribution of an active somatosensory stimulation to the perceived intensity of self-motion, relative to other sensory systems. Participants judged the intensity of longitudinal and lateral driving maneuvers in a dynamic driving simulator in passive driving conditions, with and without additional active somatosensory stimulation, as provided by an Active Seat (AS) and Active Belts (AB) integrated system (ASB). The results show that ASB enhances the perceived intensity of sustained decelerations, and increases the precision of acceleration perception overall. Our findings are consistent with models of perception, and indicate that active somatosensory stimulation can indeed be used to improve simulation fidelity.


Assuntos
Condução de Veículo , Simulação por Computador , Percepção de Movimento/fisiologia , Visão Ocular/fisiologia , Aceleração , Adulto , Feminino , Humanos , Masculino , Psicofísica , Adulto Jovem
3.
Sensors (Basel) ; 21(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34450816

RESUMO

In recent years the increasing needs of reducing the costs of car development expressed by the automotive market have determined a rapid development of virtual driver prototyping tools that aims at reproducing vehicle behaviors. Nevertheless, these advanced tools are still not designed to exploit the entire vehicle dynamics potential, preferring to assure the minimum requirements in the worst possible operating conditions instead. Furthermore, their calibration is typically performed in a pre-defined strict range of operating conditions, established by specific regulations or OEM routines. For this reason, their performance can considerably decrease in particularly crucial safetycritical situations, where the environmental conditions (rain, snow, ice), the road singularities (oil stains, puddles, holes), and the tyre thermal and ageing phenomena can deeply affect the adherence potential. The objective of the work is to investigate the possibility of the physical model-based control to take into account the variations in terms of the dynamic behavior of the systems and of the boundary conditions. Different scenarios with specific tyre thermal and wear conditions have been tested on diverse road surfaces validating the designed model predictive control algorithm in a hardware-in-the-loop real-time environment and demonstrating the augmented reliability of an advanced virtual driver aware of available information concerning the tyre dynamic limits. The multidisciplinary proposal will provide a paradigm shift in the development of strategies and a solid breakthrough towards enhanced development of the driving automatization systems, unleashing the potential of physical modeling to the next level of vehicle control, able to exploit and to take into account the multi-physical tyre variations.


Assuntos
Acidentes de Trânsito , Condução de Veículo , Algoritmos , Modelos Teóricos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA