RESUMO
BACKGROUND AND PURPOSE: Multiple drugs targeting the calcitonin gene-related peptide (CGRP) receptor have been developed for migraine treatment. Here, the effect of the monoclonal antibody erenumab on CGRP-induced vasorelaxation was investigated in human isolated blood vessels, as well as the effect of combining erenumab with the small molecule drugs, namely rimegepant, olcegepant, or sumatriptan. EXPERIMENTAL APPROACH: Concentration-response curves to CGRP, adrenomedullin or pramlintide were constructed in human coronary artery (HCA) and human middle meningeal artery (HMMA) segments, incubated with or without erenumab and/or olcegepant. pA2 or pKb values were calculated to determine the potency of erenumab in both tissues. To study whether acutely acting antimigraine drugs exerted additional CGRP-blocking effects on top of erenumab, HCA segments were incubated with a maximally effective concentration of erenumab (3 µM), precontracted with KCl and exposed to CGRP, followed by rimegepant, olcegepant, or sumatriptan in increasing concentrations. KEY RESULTS: Erenumab shifted the concentration-response curve to CGRP in both vascular tissues. However, in HCA, the Schild plot slope was significantly smaller than unity, whereas this was not the case in HMMA, indicating different CGRP receptor mechanisms in these tissues. In HCA, rimegepant, olcegepant and sumatriptan exerted additional effects on CGRP on top of a maximal effect of erenumab. CONCLUSIONS AND IMPLICATIONS: Gepants have additional effects on top of erenumab for CGRP-induced relaxation and could be effective in treating migraine attacks in patients already using erenumab as prophylaxis.
Assuntos
Anticorpos Monoclonais Humanizados , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Vasos Coronários , Artérias Meníngeas , Sumatriptana , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Vasos Coronários/efeitos dos fármacos , Artérias Meníngeas/efeitos dos fármacos , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Sumatriptana/farmacologia , Masculino , Pessoa de Meia-Idade , Feminino , Relação Dose-Resposta a Droga , Piperidinas/farmacologia , Anticorpos Monoclonais/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Vasodilatação/efeitos dos fármacos , Piperazinas/farmacologia , Quinazolinas/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Técnicas In Vitro , Idoso , Adulto , PiridinasRESUMO
Polysorbate 80 (PS80) functions as a dispersing agent or solubilizer in many pharmaceuticals, and as a stabilizer in biopharmaceuticals. Topical or parenteral administration of low doses of PS80 in biopharmaceuticals has been associated with mild allergic reactions, including local injection site reactions in humans. High doses of PS80, such as levels found in traditional Chinese herbal parenteral medicines, have been linked to systemic effects consistent with anaphylactoid-type reactions, which are characterized by the direct release of histamine from mast cells (degranulation). Nonclinical safety assessments of PS80 in vivo have mainly focused on canine model systems, a species established to be particularly sensitive to PS80. However, there is conflicting data about the dose and route of administration of PS80 required to elicit an anaphylactoid-type reaction in this model system. Therefore, studies using multiple dosing regimens in anesthetized and conscious dogs including a combination of cardiovascular data, clinical signs, and biomarkers of mast cell degranulation were conducted. An intravenous (IV) bolus of 1 mg/kg PS80 (0.25% w/v) elicited a positive anaphylactoid reaction including increased heart rate, hypotension, and clinical signs associated with anaphylactoid reactions (e.g., reddened muzzle). However, a full reaction was not observed with a subcutaneous (SC) injection of PS80 (0.25% w/v) up to 20 mg/kg and IV bolus or IV infusions up to 0.5 mg/kg. These data establish a threshold dose for eliciting an anaphylactoid reaction in canine which varies depending on the route of administration as well as the rate of PS80 infusion.
Assuntos
Anafilaxia , Anafilaxia/induzido quimicamente , Animais , Cães , Histamina , Injeções Intravenosas , Mastócitos , Polissorbatos/toxicidadeRESUMO
Polysorbate 80 (PS80) is commonly used in pre-clinical formulations. The dose threshold for cardiovascular (CV) changes and hypersensitivity reaction in the dog was assessed and compared to other species. PS80 was administered by intravenous (IV) bolus (.5, 1 mg/kg), IV infusion (.3, .5, 1, 3 mg/kg), subcutaneous (SC) injection (5, 10, 15 mg/kg) and oral gavage (10 mg/kg) to dogs with CV monitoring. Monkeys and minipigs received PS80 by IV infusion at 3 mg/kg. Plasma histamine concentration was measured following PS80 IV infusion and with diphenhydramine pre-treatment in dogs only. In dogs, PS80 was not associated with CV changes at doses up to 15 mg/kg SC and 10 mg/kg oral, but decreased blood pressure and increased heart rate with IV bolus at ≥ .5 mg/kg and IV infusion at ≥ 1.0 mg/kg and decreased body temperature with IV infusion at 3 mg/kg was observed. Transient edema and erythema were noted with all administration routes, in all three species including doses that were devoid of CV effects. In monkeys and minipigs, PS80 did not induce CV, cutaneous or histamine concentration changes. These results suggest that mild, transient skin changes occur following PS80 administration at doses that are not associated with CV effects in the dogs. In dogs, the cardiovascular effect threshold was <.5 mg/kg for IV bolus, .3 mg/kg for IV infusion, 15 mg/kg for SC injection, and 10 mg/kg for oral administration. Monkey and minipig were refractory to PS80-induced histamine release at 3 mg/kg by IV infusion over 15 minutes.
Assuntos
Anafilaxia , Polissorbatos , Anafilaxia/induzido quimicamente , Animais , Cães , Histamina , Injeções Intravenosas , Polissorbatos/toxicidade , Suínos , Porco MiniaturaRESUMO
Phosphatidylinositol 3-kinase (PI3K) δ is a lipid kinase primarily found in leukocytes, which regulates important cell functions. AMG2519493 was a PI3K δ-specific inhibitor in development for treatment of various inflammatory diseases. AMG2519493-related changes in the male and/or female reproductive organs were observed in the 1- and 3-month oral repeat dose toxicology studies in the rat and cynomolgus monkey. Hemorrhagic corpora lutea cysts and increased incidence of corpora lutea cysts without hemorrhage were observed in the ovaries at supra pharmacological doses in the rat. A decrease in seminiferous germ cells in the testis, indicative of spermatogenesis maturation arrest, was observed in both the rat and cynomolgus monkey. Although the characteristics were comparable, the drug systemic exposures associated with the testicular changes were very different between the 2 species. In the rat, the testicular change was only observed at supra pharmacologic exposure. Isotype assessment of PI3K signaling in rat spermatogonia in vitro indicated a role for PI3K ß, but not δ, in the c Kit/PI3K/protein kinase B signaling pathway. Therefore, changes in both the ovary and testis of the rat were considered due to off target effect as they only occurred at suprapharmacologic exposure. In contrast, the testicular changes in the cynomolgus monkey (decrease in seminiferous germ cells) occurred at very low doses associated with PI3K δ-specific inhibition, indicating that the PI3K δ isoform may be important in spermatogenesis maturation in the cynomolgus monkey. Our results suggest species-related differences in PI3K isoform-specific control on reproductive organs.
Assuntos
Ovário/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Testículo/efeitos dos fármacos , Animais , Feminino , Macaca fascicularis , Masculino , Camundongos , Ovário/enzimologia , Ratos , Ratos Sprague-Dawley , Espermatogônias/enzimologia , Testículo/enzimologiaRESUMO
Phosphatidylinositol 3-kinases (PI3Ks) regulate intracellular signaling events for multiple cell surface receptors. Phosphatidylinositol 3-kinase δ, 1 of 4 class I PI3K isoforms, is primarily found in leukocytes and regulates immune cell functions. Here, we report changes in the immune and digestive systems that were associated with AMG2519493, a highly selective small-molecule PI3Kδ inhibitor. Following 1- or 3-month oral repeat dosing in the cynomolgus monkey, changes were observed in circulating B cells, lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue, tonsil), and the digestive tract. Decreased circulating B cells and lymphoid cellularity in B cell-rich zones in lymphoid tissues were attributed to the intended pharmacologic activity of AMG2519493. Dose- and duration-dependent digestive system toxicity was characterized by inflammation in the large intestine and secondary opportunistic infections restricted to the digestive tract. Digestive tract changes were associated with moribundity and mortality at high-dose levels, and the effect level decreased with increased duration of exposure. These observations demonstrate the role of PI3Kδ in regulation of the immune system and of host resistance to opportunistic infections of the digestive tract.
Assuntos
Infecções Oportunistas , Fosfatidilinositol 3-Quinase , Animais , Imunomodulação , Macaca fascicularis , Fosfatidilinositol 3-QuinasesRESUMO
Calcitonin gene-related peptide (CGRP) and its receptor have been implicated as a key mediator in the pathophysiology of migraine. Thus, erenumab, a monoclonal antibody antagonist of the CGRP receptor, administered as a once monthly dose of 70 or 140â¯mg has been approved for the preventive treatment of migraine in adults. Due to the species specificity of erenumab, the cynomolgus monkey was used in the pharmacology, pharmacokinetics, and toxicology studies to support the clinical program. There were no effects of erenumab on platelets in vitro (by binding, activation or phagocytosis assays). Specific staining of human tissues with erenumab did not indicated any off-target binding. There were no erenumab-related findings in a cardiovascular safety pharmacology study in cynomolgus monkeys or in vitro in human isolated coronary arteries. Repeat-dose toxicology studies conducted in cynomolgus monkeys at dose levels up to 225â¯mg/kg (1 month) or up to 150â¯mg/kg (up to 6 months) with twice weekly subcutaneous (SC) doses showed no evidence of erenumab-mediated adverse toxicity. There were no effects on pregnancy, embryo-fetal or postnatal growth and development in an enhanced pre-postnatal development study in the cynomolgus monkey. There was evidence of placental transfer of erenumab based on measurable serum concentrations in the infants up to 3 months post birth. The maternal and developmental no-observed-effect level (NOEL) was the highest dose tested (50â¯mg/kg SC Q2W). These nonclinical data in total indicate no safety signal of concern to date and provide adequate margins of exposure between the observed safe doses in animals and clinical dose levels.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Transtornos de Enxaqueca/prevenção & controle , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Anticorpos Monoclonais Humanizados/sangue , Relação Dose-Resposta a Droga , HumanosRESUMO
Current advances in the study of cutaneous adverse drug reactions can be attributed to the recent understanding that the skin is both a metabolically and immunologically competent organ. The ability of the skin to serve as a protective barrier with limited drug biotransformation ability, yet highly active immune function, has provided insights into its biological capability. While the immune response of the skin to drugs is vastly different from that of the liver due to evolutionary conditioning, it frequently occurs in response to various drug classes and manifests as a spectrum of hypersensitivity reactions. The skin is a common site of adverse and idiosyncratic drug reactions; drug-specific T-cells, as well as involvement of an innate immune response, appear to be key mechanistic drivers in such scenarios. Association of other factors such as human leukocyte antigen (HLA) polymorphisms may play a significant role for particular drugs. This review aims to integrate emerging findings into proposed mechanisms of drug metabolism and immunity in the skin that are likely responsible for rashes and other local allergic responses. These unique biological aspects of the skin, and their translation into implications for drug development and the use of animal models, will be discussed.
Assuntos
Hipersensibilidade a Drogas/imunologia , Exantema/imunologia , Antígenos HLA/imunologia , Imunidade Inata , Pele/imunologia , Linfócitos T/imunologia , Animais , Hipersensibilidade a Drogas/patologia , Exantema/patologia , Humanos , Pele/patologia , Linfócitos T/patologiaRESUMO
The expression and tissue distribution of RANK (Receptor Activator of Nuclear Factor κ B) and RANK Ligand (RANKL) are of critical interest in relation to efficacy and safety of antibodies against RANK or RANKL that are approved or under consideration as potential therapeutic agents. Data from the literature using protein or mRNA analyses of rodent and human tissues or immunohistochemical (IHC) studies with a variety of antibodies and methods have provided some background of the distribution of RANK and RANKL but have yielded inconsistent findings. The present study reports the generation of carefully validated antibodies to RANK and RANKL and the development of an optimized IHC method, with confirmatory data from 2 well-validated alternative protocols that were developed and performed in separate laboratories at USC and at Amgen. Tissue expression of RANK and RANKL is reported for the optimized IHC assay.
Assuntos
Anticorpos/metabolismo , Imuno-Histoquímica/métodos , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Animais , Humanos , Imuno-Histoquímica/normas , Camundongos , Ligante RANK/química , Receptor Ativador de Fator Nuclear kappa-B/química , Distribuição TecidualRESUMO
The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions.
Assuntos
Anticorpos Monoclonais , Plaquetas/imunologia , Imunoglobulina G , Monócitos/imunologia , Fagocitose/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Receptores de IgG , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Macaca fascicularis , Camundongos , Fagocitose/imunologia , Ativação Plaquetária/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologiaRESUMO
AIMS: Denosumab is a fully human monoclonal immunoglobulin G2 antibody that inhibits bone resorption and increases bone mass and strength. The present clinical study assessed serum and seminal fluid pharmacokinetics following a single denosumab dose in healthy men, and evaluated whether denosumab in seminal fluid poses any risk to a fetus in the event of unprotected sexual intercourse with a pregnant partner. METHODS: An open-label, single-dose study in 12 healthy men was conducted over a 106-day period. Subjects received a single subcutaneous dose of 60-mg denosumab on day 1. Serum and seminal fluid samples were collected at specified time points to assess denosumab pharmacokinetics. Adverse events were recorded. RESULTS: Denosumab was measurable at low concentrations in seminal fluid (~2% of serum concentrations). The mean [standard deviation (SD)] maximum observed drug concentration (Cmax ) was 6170 (2070) ng ml(-1) (serum) and 100 (81.9) ng ml(-1) (seminal fluid). The median time to Cmax (tmax ) was 8 days (serum) and 21 days (seminal fluid). The mean (SD) area under the plasma concentration-time curve (AUC) from time zero to the time of the last quantifiable concentration (AUClast ) was 333 000 (122 000) dayâ¢ng ml(-1) (serum) and 5220 (4880) dayâ¢ng ml(-1) (seminal fluid). The mean (SD) Cmax and AUC ratios between seminal fluid and serum were 0.0217 (0.0154) and 0.0170 (0.0148), respectively. Using conservative assumptions for ejaculate volume (6 ml), vaginal absorption (100%) and placental transfer (100%), the measured mean denosumab seminal fluid Cmax would result in fetal exposure that was more than 110 times below the preclinically derived 'no effect level' for denosumab. CONCLUSIONS: These results indicate a negligible risk to a fetus exposed to denosumab via seminal fluid transfer to a pregnant partner.
Assuntos
Conservadores da Densidade Óssea/farmacocinética , Denosumab/farmacocinética , Troca Materno-Fetal , Sêmen/metabolismo , Vagina/metabolismo , Adulto , Idoso , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/sangue , Denosumab/administração & dosagem , Denosumab/sangue , Feminino , Voluntários Saudáveis , Humanos , Injeções Subcutâneas , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Gravidez , RiscoRESUMO
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
Assuntos
Anticorpos Monoclonais/isolamento & purificação , Polietilenoglicóis/química , Polietilenos/química , Compostos de Amônio Quaternário/química , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Células CHO , Centrifugação , Cricetinae , Cricetulus , Floculação , HumanosRESUMO
Understanding species differences in the placental transfer of monoclonal antibodies is important to inform species selection for nonclinical safety assessment, interpret embryo-fetal changes observed in these studies, and extrapolate their human relevance. Data presented here for a fully human immunoglobulin G2 monoclonal antibody (IgG2X) revealed that, during organogenesis, in both the cynomolgus monkey (gestation day 35 [gd35]) and the rat (gd10) the extent of IgG2X placental transfer (approximately 0.5% maternal plasma concentration, MPC) was similar to the limited published human data for endogenous IgG. At this early gestational stage, IgG2X placental transfer was approximately 6-fold higher in the rabbit (gd10). By the end of organogenesis, rat embryonic plasma concentrations (gd16) exceeded those in the cynomolgus monkey (gd50) by approximately 3-fold. These data suggest that relative to the cynomolgus monkey, the rabbit (and to a lesser extent the rat) may overestimate potential harmful effects to the human embryo during this critical period of development. Beyond organogenesis, fetal IgG2X plasma concentrations increased approximately 10-fold early in the second trimester (gd50-70) in the cynomolgus monkey and remained relatively unchanged thereafter (at approximately 5% MPC). Late gestational assessment was precluded in rabbits due to immunogenicity, but in rats, fetal IgG2X plasma concentrations increased more than 6-fold from gd16 to gd21 (reaching approximately 15% MPC). In rats, maternal exposure consistent with that achieved by ICH S6(R1) high-dose selection criteria resulted in embryonic plasma concentrations, reaching pharmacologically relevant levels during organogenesis. Furthermore, dose proportional exposure in both mothers and embryos indicated that this was unlikely to occur at the lower therapeutic dose levels used in humans.
Assuntos
Anticorpos Monoclonais/farmacocinética , Troca Materno-Fetal , Organogênese/efeitos dos fármacos , Placenta/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Feto/efeitos dos fármacos , Feto/embriologia , Idade Gestacional , Imunoglobulina G/metabolismo , Macaca fascicularis , Exposição Materna , Placenta/metabolismo , Gravidez , Coelhos , Ratos , Ratos Sprague-DawleyRESUMO
RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.
Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Osteoclastos/patologia , Osteopetrose/patologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Anticorpos Monoclonais Humanizados/imunologia , Remodelação Óssea , Denosumab , Feminino , Macaca fascicularis , Osteopetrose/diagnóstico por imagem , Fenótipo , Gravidez , Tomografia Computadorizada por Raios X , Erupção DentáriaRESUMO
Denosumab is a monoclonal antibody that inhibits bone resorption by targeting RANKL, an essential mediator of osteoclast formation, function, and survival. Reproductive toxicity of denosumab was assessed in cynomolgus monkeys in an embryofetal development study (dosing GD20-50) and a pre-postnatal toxicity study (dosing GD20-parturition). In the embryofetal toxicity study, denosumab did not elicit maternal toxicity, fetal harm or teratogenicity. In the pre-postnatal toxicity study, there were increased stillbirths, and one maternal death due to dystocia. There was no effect on maternal mammary gland histomorphology, lactation, or fetal growth. In infants exposed in utero, there was increased postnatal mortality, decreased body weight gain, and decreased growth/development. Denosumab-related effects in infants were present in bones and lymph nodes. There was full recovery at 6 months of age from most bone-related changes observed earlier postpartum. The effects observed in mothers and infants were consistent with the pharmacological action of denosumab.
Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Conservadores da Densidade Óssea/toxicidade , Animais , Denosumab , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Macaca fascicularis , Masculino , Troca Materno-Fetal , Gravidez , Reprodução/efeitos dos fármacos , NatimortoRESUMO
According to ICH S6(R1), mating studies are not practical for assessing effects on female fertility of biopharmaceuticals that are pharmacologically active only in non-human primates (NHPs). Instead, fertility should be assessed by evaluating histopathology and organ weights of the reproductive tract in studies of at least 3 months dosing duration using sexually mature NHPs. An assessment of the menstrual cycle in females can be included if there is cause for concern based on pharmacological mode of action or relevant findings in previous studies. However, many factors unrelated to the molecule under evaluation can impact cycle length and thus affect data interpretation. Assessment of a monoclonal antibody in a 6 month repeat dose toxicity study is used as an example in this manuscript to review potential sources of background variability, identify strategies to minimize its impact and recommend optimal ways to collect, present and analyze menstrual cycle data. Experimental variables include the amount of time required for menses to normalize following the transport of animals to the testing facility, stress-related effects on the cycle length due to socialization issues with new cagemates, and the normal background irregularity of cycle length in NHPs. Study related procedures (i.e., animal handling for dosing, blood draws, body weights, ECGs, etc.) did not affect cycle lengths in this study. We show that introducing a number of key experimental control procedures to minimize cycle variability can enable a robust assessment of the effects of a biotherapeutic on menstrual cycling within a chronic toxicity study in NHPs.
Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Biofarmácia/métodos , Determinação de Ponto Final , Fertilidade/efeitos dos fármacos , Ciclo Menstrual/efeitos dos fármacos , Testes de Toxicidade Subcrônica/métodos , Animais , Biofarmácia/normas , Feminino , Macaca fascicularis , Medição de Risco , Fatores de Tempo , Testes de Toxicidade Subcrônica/normasRESUMO
Fibroblast growth factor 21 (FGF21) is involved in regulating energy metabolism, and it has shown significant promise as a treatment for type II diabetes; however, the native protein has a very short circulating half-life necessitating frequent injections to maintain a physiological effect. Polyethylene glycol (PEG) conjugation to proteins has been used as a method for extending the circulating half-life of many pharmaceutical proteins; however, PEG does carry the risk of vacuole formation, particularly in the renal tubular epithelium. Since renal vacuole formation may be particularly problematic for diabetic patients, we engineered site-directed PEGylated variants of FGF21 with sustained potency and minimized vacuole formation. This was accomplished both by probing the site of PEGylation on FGF21 as well as by examining various PEG configurations. While the site of PEGylation has a significant impact on the bioactivity of FGF21, it has only a marginal impact on vacuole formation; however, the configuration and number of PEGs conjugated to the protein has a much more profound effect on vacuologenesis.
Assuntos
Fatores de Crescimento de Fibroblastos/química , Polietilenoglicóis/química , Engenharia de Proteínas , Vacúolos/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Obesos , Modelos Moleculares , Polietilenoglicóis/metabolismo , Vacúolos/genéticaRESUMO
Non-human primates may be the only relevant species for pharmacology or toxicology studies of certain biologics, due to lack of activity in other species. Flow cytometry immunophenotyping is often included as a minimally invasive adjunct to standard toxicity testing. A retrospective inter-laboratory analysis was conducted to assess counts and variability of the main cell types monitored in toxicity studies, and to provide guidance for conduct and interpretation of immunophenotyping assessments in cynomolgus monkeys. Univariate and multivariate models were developed. Study design factors influencing cell counts and variability were identified and a power analysis was performed. Pre-study and on-study counts were generally similar; longitudinal analysis showed little drift in mean counts or within-animal variability over time. Within-animal variability was lower than inter-animal variability. Gender was associated with small but significant differences in mean counts and variability. Age was associated with significant differences in variability. Immunophenotype definitions were associated with significant differences in mean counts and within-animal variability for most cell types. Power analysis for groups of 6-8 animals showed that differences of ≈50% in counts of T-cells, T-cell subsets, and B-cells compared to pre-treatment values may be detected; for NK cells and monocytes, differences of ≈60-90% may be detected. This review yields some general points to consider for immunophenotyping studies, i.e. (a) analysis of log-transformed cell count data and comparisons using each animal as its own reference will improve ability to detect changes, (b) the magnitude of change detectable given study group size should be considered, (c) multiplication of sampling timepoints during a study seems unnecessary, (d) consideration should be given to using only one gender, when applicable, to increase power while minimizing animal usage, and (e) the choice of immunophenotype has impacts on cell counts and variability.
Assuntos
Linfócitos B/imunologia , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Monócitos/imunologia , Linfócitos T/imunologia , Fatores Etários , Animais , Contagem de Células , Separação Celular , Citometria de Fluxo , Humanos , Imunofenotipagem/métodos , Macaca fascicularis , Modelos Animais , Variações Dependentes do Observador , Guias de Prática Clínica como Assunto , Estudos Retrospectivos , Fatores SexuaisRESUMO
Recent ICH S6 guidance on preclinical safety evaluation of biotechnology derived biopharmaceuticals indicates that testing for anti-drug antibodies is not always required to establish the safety of a protein therapeutic. Most human protein therapeutics will induce a rapid and robust anti-drug antibody response in preclinical studies and the presence of high levels of circulating drug complicates the detection of anti-drug antibodies. The presence of anti-drug antibodies in preclinical studies does not predict if a protein therapeutic will be immunogenic in the clinic. When testing for anti-drug antibodies is warranted, there are a variety of analytical procedures that can be utilized, although each of these methods has advantages as well as limitations. Immunoassays can be used to identify if antibodies are present that bind to the therapeutic, and when necessary, biological assays can be used to identify if those antibodies neutralize the effect of the therapeutic. Under certain circumstances including intravenous dosing of a mAb therapeutic, anti-drug antibodies can form large immune complexes that can result in a safety issue. The value of immunogenicity data in preclinical studies is to aid in interpretation of other study data when necessary.
Assuntos
Anticorpos/imunologia , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Antígenos/imunologia , Técnicas Biossensoriais , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos ImunológicosRESUMO
The Immunotoxicology Technical Committee of HESI sponsored a retrospective analysis of T-cell-dependent antibody responses in non-human primates (NHP). Antibody responses to keyhole limpet hemocyanin (KLH), tetanus toxoid (TT), and/or sheep red blood cells (SRBC) in 178 NHP (from 8 sponsors, 13 testing sites, 30 studies) were statistically analyzed. Rates of positive or negative anti-KLH, -TT, and -SRBC primary and secondary IgM and IgG responses were compared. The influence of gender, country of origin, and previous immunization with a different antigen on response rate and kinetics of anti-KLH and anti-TT responses were analyzed. In addition, the magnitude of the antibody responses and the impact of the above-mentioned factors were analyzed. In addition, based upon the inter-individual variability of the peak response values, power calculations were conducted. The analysis demonstrated that the rates of positive responses were similar between the two genders, were high for KLH, SRBC, and TT challenges by 21 days following immunization (87, 100, and 84%, respectively, for IgGs) and did not include statistically significant differences based on NHP country of origin. Mean peak secondary responses were greater than peak primary responses; the magnitude of the response to KLH was increased by incomplete Freund's adjuvant (IFA). Gender had little effect on the magnitude and variability of these responses. KLH and TT were associated with similar inter-animal variability, whereas in some situations KLH responses were less variable than responses to SRBC. The data suggested that inter-animal variability with KLH was similar with or without IFA. Power analysis illustrated that animal group sizes of typical standard toxicology studies (generally ≤ 4/sex) are likely to detect only fairly large treatment effects. However, combining males and females, when appropriate, will improve the power: an N of 8 to 12 could detect ≤ 3.1-fold differences in anti-KLH IgG responses.