RESUMO
The projected increase in drought severity and duration worldwide poses a significant threat to crop growth and sustainable food production. Xyloglucan endotransglucosylase/hydrolases (XTHs) family is essential in cell wall modification through the construction and restructuring of xyloglucan cross-links, but their role in drought tolerance and stomatal regulation is still illusive. We cloned and functionally characterized HvXTH1 using genetic, physiological, biochemical, transcriptomic and metabolomic approaches in barley. Evolutionary bioinformatics showed that orthologues of XTH1 was originated from Streptophyte algae (e.g. some species in the Zygnematales) the closest clade to land plants based on OneKP database. HvXTH1 is highly expressed in leaves and HvXTH1 is localized to the plasma membrane. Under drought conditions, silencing HvXTH1 in drought-tolerant Tibetan wild barley XZ5 induced a significant reduction in water loss rate and increase in biomass, however overexpressing HvXTH1 exhibited drought sensitivity with significantly less drought-responsive stomata, lower lignin content and a thicker cell wall. Transcriptome profile of the wild type Golden Promise and HvXTH1-OX demonstrated that drought-induced differentially expressed genes in leaves are related to cell wall biosynthesis, abscisic acid and stomatal signaling, and stress response. Furthermore, overexpressing HvXTH1 suppressed both genes and metabolites in the phenylpropanoid pathway for lignin biosynthesis, leading to drought sensitivity of HvXTH1-OX. We provide new insight by deciphering the function of a novel protein HvXTH1 for drought tolerance in cell wall modification, stomatal regulation, and phenylpropanoid pathway for lignin biosynthesis in barley. The function of HvXTH1 in drought response will be beneficial to develop crop varieties adapted to drought.
RESUMO
Nanotechnology is one of the most recent approaches employed to defend plants against both biotic and abiotic stress including heavy metals such as Cadmium (Cd). In this study, we evaluated the effects of titanium dioxide (TiO2) nanoparticles (TiO2 NPs) in alleviating Cd stress in Tetrastigma hemsleyanum Diels et Gilg. Compared with Cd treatment, TiO2 NPs decreased leaf Cd concentration, restored Cd exposure-related reduction in the biomass to about 69% of control and decreased activities of antioxidative enzymes. Integrative analysis of transcriptome and metabolome revealed 325 differentially expressed genes associated with TiO2 NP treatment, most of which were enriched in biosynthesis of secondary metabolites. Among them, the flavonoid and phenylpropanoid biosynthetic pathways were significantly regulated to improve the growth of T. hemsleyanum when treated with Cd. In the KEGG Markup Language (KGML) network analysis, we found some commonly regulated pathways between Cd and Cd+TiO2 NP treatment, including phenylpropanoid biosynthesis, ABC transporters, and isoflavonoid biosynthesis, indicating their potential core network positions in controlling T. hemsleyanum response to Cd stress. Overall, our findings revealed a complex response system for tolerating Cd, encompassing the transportation, reactive oxygen species scavenging, regulation of gene expression, and metabolite accumulation in T. hemsleyanum. Our results indicate that TiO2 NP can be used to reduce Cd toxicity in T. hemsleyanum.
Assuntos
Antioxidantes , Nanopartículas , Cádmio/toxicidade , Titânio/farmacologiaRESUMO
Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.
Assuntos
Polygonatum , Polygonatum/genética , Análise por Conglomerados , Flavonoides , Perfilação da Expressão Gênica , Aprendizado de MáquinaRESUMO
INTRODUCTION: Frequent climate change-induced drought events are detrimental environmental stresses affecting global crop production and ecosystem health. Several efforts have facilitated crop breeding for resilient varieties to counteract stress. However, progress is hampered due to the complexity of drought tolerance; a greater variety of novel genes are required across varying environments. Tibetan annual wild barley is a unique and precious germplasm that is well adapted to abiotic stress and can provide elite genes for crop improvement in drought tolerance. OBJECTIVES: To identify the genetic basis and unique mechanisms for drought tolerance in Tibetan wild barley. METHODS: Whole genome resequencing and comparative RNA-seq approaches were performed to identify candidate genes associated with drought tolerance via investigating the genetic diversity and transcriptional variation between cultivated and Tibetan wild barley. Bioinformatics, population genetics, and gene silencing were conducted to obtain insights into ecological adaptation in barley and functions of key genes. RESULTS: Over 20 million genetic variants and a total of 15,361 significantly affected genes were identified in our dataset. Combined genomic, transcriptomic, evolutionary, and experimental analyses revealed 26 water deficit resilience-associated genes in the drought-tolerant wild barley XZ5 with unique genetic variants and expression patterns. Functional prediction revealed Tibetan wild barley employs effective regulators to activate various responsive pathways with novel genes, such as Zinc-Induced Facilitator-Like 2 (HvZIFL2) and Peroxidase 11 (HvPOD11), to adapt to water deficit conditions. Gene silencing and drought tolerance evaluation in a natural barley population demonstrated that HvZIFL2 and HvPOD11 positively regulate drought tolerance in barley. CONCLUSION: Our findings reveal functional genes that have been selected across barley's complex history of domestication to thrive in water deficit environments. This will be useful for molecular breeding and provide new insights into drought-tolerance mechanisms in wild relatives of major cereal crops.
Assuntos
Genoma de Planta , Hordeum , Perfilação da Expressão Gênica , Água , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Genótipo , Variação Genética , Evolução Molecular , Secas , Proteínas de Plantas/genéticaRESUMO
MAIN CONCLUSION: This study displayed the transcriptional regulation network of key regulators and downstream pathway in seedling morphogenesis of Brassica napus under different light quality. Plants undergo photomorphogenesis upon the presence of light, mediated by different light (e.g., blue, red, and far-red) signaling pathways. Although the light signaling pathway has been well documented in Arabidopsis, the underlying mechanisms were studied to a less extent in other plant species including Brassica napus. In this study, we investigated the effect of different light qualities (white, blue, red, and far-red light) on the hypocotyl elongation in B. napus, and performed the transcriptomic analysis of seedlings in response to different light qualities. The results showed that hypocotyl elongation was slightly inhibited by red light, while it was strongly inhibited by blue/far-red light. Transcriptome analysis identified 9748 differentially expressed genes (DEGs) among treatments. Gene ontology (GO) enrichment analysis of DEGs showed that light-responsive and photosynthesis-related genes were highly expressed in response to blue/far-red light rather than in red light. Furthermore, the key genes in light signaling (i.e., PHYB, HY5, HYH, HFR1, and PIF3) exhibited distinct expression patterns between blue/far-red and red light treatments. In addition, subgenome dominant expression of homoeologous genes were observed for some genes, such as PHYA, PHYB, HFR1, and BBXs. The current study displayed a comprehensive dissection of light-mediated transcriptional regulation network, including light signaling, phytohormone, and cell elongation/modification, which improved the understanding on the underlying mechanism of light-regulated hypocotyl growth in B. napus.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Plântula/genética , Plântula/metabolismoRESUMO
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.
Assuntos
Gleiquênias , Elementos de DNA Transponíveis , Evolução Molecular , Gleiquênias/genética , Genoma de Planta , Plantas/genéticaRESUMO
The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops.
Assuntos
Domesticação , Hordeum , Produtos Agrícolas/genética , Grão Comestível/genética , Edição de Genes , Hordeum/genética , Poaceae/genética , Tolerância ao Sal/genéticaRESUMO
Malt production is one of the important uses of barley, and its quality differs greatly depending on the barley varieties used. In this study, ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry technology was used to investigate the temporal changes of metabolites during malting in two barley varieties: Franklin (malt barley) and Yerong (non-malt barley). Also, differences in metabolite profiles were compared in the kilned malt between two other malt barley varieties (Copeland and Planet) and two non-malt varieties (ZD10 and Hua30). Results showed that degradation of trisaccharide and accumulation of UDP-glucose and mannose-1-phosphate are the key metabolic events during steeping, with Franklin showing earlier and greater changes. Earlier increase of sugars and amino acids in Franklin is associated with its faster germination rate. Comparative metabolome analysis of kilned malt from the different barley varieties indicated that malt barley accumulated more sugars, hordatine-glucoside, and oxoproline, and non-malt barley accumulated more polyphenols and monogalactosylmonoacylglycerol. These results improved the understanding of the genotypic difference in the formation of malt quality at the metabolomic level.
Assuntos
Hordeum , Germinação , Metaboloma , Metabolômica , PlântulaRESUMO
Vacuolar H+-pumping pyrophosphatases (VPs) provide a proton gradient for Na+ sequestration in the tonoplast; however, the regulatory mechanisms of VPs in developing salt tolerance have not been fully elucidated. Here, we cloned a barley (Hordeum vulgare) VP gene (HVP10) that was identified previously as the HvNax3 gene. Homology analysis showed VP10 in plants had conserved structure and sequence and likely originated from the ancestors of the Ceramiales order of Rhodophyta (Cyanidioschyzon merolae). HVP10 was mainly expressed in roots and upregulated in response to salt stress. After salt treatment for 3 weeks, HVP10 knockdown (RNA interference) and knockout (CRISPR/Cas9 gene editing) barley plants showed greatly inhibited growth and higher shoot Na+ concentration, Na+ transportation rate and xylem Na+ loading relative to wild-type (WT) plants. Reverse transcription quantitative polymerase chain reaction and microelectronic Ion Flux Estimation results indicated that HVP10 likely modulates Na+ sequestration into the root vacuole by acting synergistically with Na+/H+ antiporters (HvNHX1 and HvNHX4) to enhance H+ efflux and K+ maintenance in roots. Moreover, transgenic rice (Oryza sativa) lines overexpressing HVP10 also showed higher salt tolerance than the WT at both seedling and adult stages with less Na+ translocation to shoots and higher grain yields under salt stress. This study reveals the molecular mechanism of HVP10 underlying salt tolerance and highlights its potential in improving crop salt tolerance.
Assuntos
Hordeum/genética , Hordeum/metabolismo , Pirofosfatase Inorgânica/metabolismo , Raízes de Plantas/metabolismo , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Sódio/metabolismo , Evolução Biológica , Transporte Biológico/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Variação Genética , Genótipo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Vacúolos/metabolismoRESUMO
At the microsite "Evolution Slope", Tabigha, Israel, wild barley (Hordeum spontaneum) populations adapted to dry Terra Rossa soil, and its derivative abutting wild barley population adapted to moist and fungi-rich Basalt soil. However, the mechanisms underlying the edaphic adaptation remain elusive. Accordingly, whole genome bisulfite sequencing, RNA-sequencing, and metabolome analysis are performed on ten wild barley accessions inhabiting Terra Rossa and Basalt soil. A total of 121 433 differentially methylated regions (DMRs) and 10 478 DMR-genes are identified between the two wild barley populations. DMR-genes in CG context (CG-DMR-genes) are enriched in the pathways related with the fundamental processes, and DMR-genes in CHH context (CHH-DMR-genes) are mainly associated with defense response. Transcriptome and metabolome analysis reveal that the primary and secondary metabolisms are more active in Terra Rossa and Basalt wild barley populations, respectively. Multi-omics analysis indicate that sugar metabolism facilitates the adaptation of wild barley to dry Terra Rossa soil, whereas the enhancement of phenylpropanoid/phenolamide biosynthesis is beneficial for wild barley to inhabit moist and fungi pathogen-rich Basalt soil. The current results make a deep insight into edaphic adaptation of wild barley and provide elite genetic and epigenetic resources for developing barley with high abiotic stress tolerance.
Assuntos
Aclimatação/genética , Metilação de DNA/genética , Evolução Molecular , Hordeum/genética , Adaptação Fisiológica/genética , Ecossistema , Hordeum/crescimento & desenvolvimento , Israel , Metaboloma/genética , Seleção Genética/genética , Estresse Fisiológico/genética , Sequenciamento Completo do GenomaRESUMO
Plants will meet various abiotic stresses during their growth and development. One of the important strategies for plants to deal with the stress is involved in metabolic regulation, causing the dramatic changes of metabolite profiles. Metabolomic studies have been intensively conducted to reveal the responses of plants to abiotic stress, but most of them were limited to one or at most two abiotic stresses in a single experiment. In this study, we compared the metabolite profiles of barley seedlings exposed to seven abiotic stresses, including drought, salt stress, aluminum (Al), cadmium (Cd), deficiency of nitrogen (N), phosphorus (P) and potassium (K). The results showed that metabolite profiles of barley under these stresses could be classified into three groups: osmotic stresses (drought and salt); metal stresses (Al and Cd) and nutrient deficiencies (N, P and K deficiencies). Compared with the control, some metabolites (including polyamines, raffinose and pipecolic acid) in plants exposed to all abiotic stresses changed significantly, while some other metabolites showed the specific change only under a certain abiotic stress, such as proline being largely increased by osmotic stress (drought and salinity), the P-containing metabolites being largely decreased under P deficiency, some amino acids (lysine, tyrosine, threonine, ornithine, glutamine and so on) showing the dramatic reduction in the plants exposed to N deficiencies, respectively. The current meta-analysis obtained a comprehensive view on the metabolic responses to various abiotic stress, and improved the understanding of the mechanisms for tolerance of barley to abiotic stress.
Assuntos
Hordeum , Dissecação , Secas , Plântula , Estresse FisiológicoRESUMO
Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.
Assuntos
Substâncias Explosivas , Gleiquênias , Magnoliopsida , Evolução Biológica , Gleiquênias/genética , Florestas , Fósseis , Magnoliopsida/genética , FilogeniaRESUMO
Phosphite (PHI) has been used in the management of Phytophthora diseases since the 1970s.We assessed the effect of PHI on controlling the incidence of Xanthomonas oryzae pv.oryzae and Pyricularia grisea. As a result, PHI application significantly inhibited the incidence of the diseases. To clarify the molecular mechanism underlying this, a transcriptome study was employed. In total, 2064 differentially expressed genes (DEGs) were identified between control and PHI treatment. The key DEGs could be classified into phenylpropanoid biosynthesis (ko00940), starch and sucrose metabolism (ko00500), and plant hormone signal transduction (ko04075). The expressions of defense-related genes had a higher expression lever upon PHI treatment. This study provides new insights into the mechanism of protection effect of PHI against pathogens.
RESUMO
Aluminum (Al) toxicity is a major abiotic stress that restricts crop production in acid soils. Plants have evolved internal and external mechanisms of tolerance, and among them it is well known that AtSTOP1 and OsART1 are key transcription factors involved in tolerance through regulation of multiple downstream genes. Here, we identified the closest homolog of these two proteins in barley, namely HvATF1, Al-tolerance Transcription Factor 1, and determined its potential function in Al stress. HvATF1 is expressed in the nucleus, and functions in transcriptional activation. The transcription of HvATF1 was found to be constitutive in different tissues, and was little affected by Al stress. Knockdown of HvATF1 by RNAi resulted in increased Al sensitivity. Transcriptomics analysis identified 64 differently expressed genes in the RNAi lines compared to the wild-type, and these were considered as candidate downstream genes regulated by HvATF1. This study provides insights into the different molecular mechanisms of Al tolerance in barley and other plants.
Assuntos
Hordeum , Alumínio/metabolismo , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de ZincoRESUMO
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
RESUMO
BACKGROUND: Endo-ß-1,4-xylanase1 (EA), the key endoxylanase in plants, is involved in the degradation of arabinoxylan during grain germination. In barley (Hordeum vulgare L.), one gene (HvXYN-1) that encode a endo-beta-1,4-xylanase, has been cloned. However, the single nucleotide polymorphisms (SNPs) that affect the endoxylanase activity and total arabinoxylan (TAX) content have yet to be characterized. The investigation of genetic variation in HvXYN1 may facilitate a better understanding of the relationship between TAX content and EA activity in barley. RESULTS: In the current study, 56 polymorphisms were detected in HvXYN1 among 210 barley accessions collected from 34 countries, with 10 distinct haplotypes identified. The SNPs at positions 110, 305, 1045, 1417, 1504, 1597, 1880 bp in the genomic region of HvXYN1 were significantly associated with EA activity (P < 0.0001), and the sites 110, 305, and 1045 were highly significantly associated with TAX content. The amount of phenotypic variation in a given trait explained by each associated polymorphism ranged from 6.96 to 9.85%. Most notably, we found two variants at positions 1504 bp and 1880 bp in the second exon that significantly (P < 0.0001) affected EA activity; this result could be used in breeding programs to improve beer quality. In addition, African accessions had the highest EA activity and TAX content, and the richest germplasm resources were from Asia, indicating the high potential value of Asian barley. CONCLUSION: This study provided insight into understanding the relationship, EA activity, TAX content with the SNPs of HvXYN1 in barley. These SNPs can be applied as DNA markers in breeding programs to improve the quality of barley for beer brewing after further validation.
Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Variação Genética , Hordeum/genética , Proteínas de Plantas/genética , Xilanos/metabolismo , Alelos , Endo-1,4-beta-Xilanases/genética , Haplótipos , Hordeum/enzimologia , Filogeografia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS: In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS: LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.
Assuntos
Adaptação Fisiológica , Hordeum/metabolismo , Potássio/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse FisiológicoRESUMO
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Assuntos
Citosol/metabolismo , Raízes de Plantas/metabolismo , Estresse Salino , Tolerância ao Sal , Sódio/metabolismo , Triticum/metabolismo , Microscopia Confocal , Vacúolos/metabolismoRESUMO
BACKGROUND: The interest has been increasing on the phenolic compounds in plants because of their nutritive function as food and the roles regulating plant growth. However, their underlying genetic mechanism in barley is still not clear. RESULTS: A genome-wide association study (GWAS) was conducted for total phenolic content (TPC), total flavonoid content (FLC) and antioxidant activity (AOA) in 67 cultivated and 156 Tibetan wild barley genotypes. Most markers associated with phenolic content were different in cultivated and wild barleys. The markers bPb-0572 and bPb-4531 were identified as the major QTLs controlling phenolic compounds in Tibetan wild barley. Moreover, the marker bPb-4531 was co-located with the UDP- glycosyltransferase gene (HvUGT), which is a homolog to Arabidopsis UGTs and involved in biosynthesis of flavonoid glycosides . CONCLUSIONS: GWAS is an efficient tool for exploring the genetic architecture of phenolic compounds in the cultivated and Tibetan wild barleys. The DArT markers applied in this study can be used in barley breeding for developing new barley cultivars with higher phenolics content. The candidate gene (HvUGT) provides a potential route for deep understanding of the molecular mechanism of flavonoid synthesis.