Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
mSphere ; 9(3): e0056523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391226

RESUMO

Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Adulto , Criança , Humanos , Adolescente , Pré-Escolar , Idoso , Recém-Nascido , Cólera/prevenção & controle , Toxina da Cólera , Antígenos O , Imunoglobulina M , Anticorpos Antibacterianos , Imunoglobulina A , Vacinação , Formação de Anticorpos , Imunoglobulina G
2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370713

RESUMO

Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that the V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than co-infection with divergent V. cholerae O1 lineages. The number of single nucleotide variants decreased between vomit and stool in four patients, increased in two, and remained unchanged in four. The number of genes encoded in the V. cholerae genome decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract.

3.
mSphere ; 8(5): e0025523, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37646517

RESUMO

Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.


Assuntos
Antígenos de Grupos Sanguíneos , Vacinas contra Cólera , Cólera , Vibrio cholerae O139 , Vibrio cholerae O1 , Humanos , Criança , Cólera/prevenção & controle , Antígenos O , Lipopolissacarídeos , Bangladesh/epidemiologia , Vacinas de Produtos Inativados , Anticorpos Antibacterianos , Imunoglobulina A , Imunoglobulina M , Vacinação
4.
Vaccine ; 41(34): 4967-4977, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37400283

RESUMO

There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Humanos , Criança , Animais , Camundongos , Pré-Escolar , Shigella flexneri , Vacinas Conjugadas , Disenteria Bacilar/prevenção & controle , Lipopolissacarídeos , Antígenos O , Anticorpos Antibacterianos , Imunoglobulina G
5.
Lancet Microbe ; 4(4): e228-e235, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907197

RESUMO

BACKGROUND: Vibriocidal antibodies are currently the best characterised correlate of protection against cholera and are used to gauge immunogenicity in vaccine trials. Although other circulating antibody responses have been associated with a decreased risk of infection, the correlates of protection against cholera have not been comprehensively compared. We aimed to analyse antibody-mediated correlates of protection from both V cholerae infection and cholera-related diarrhoea. METHODS: We conducted a systems serology study that analysed 58 serum antibody biomarkers as correlates of protection against V cholerae O1 infection or diarrhoea. We used serum samples from two cohorts: household contacts of people with confirmed cholera in Dhaka, Bangladesh, and cholera-naive volunteers who were recruited at three centres in the USA, vaccinated with a single dose of CVD 103-HgR live oral cholera vaccine, and then challenged with V cholerae O1 El Tor Inaba strain N16961. We measured antigen-specific immunoglobulin responses against antigens using a customised Luminex assay and used conditional random forest models to examine which baseline biomarkers were most important for classifying individuals who went on to develop infection versus those who remained uninfected or asymptomatic. V cholerae infection was defined as having a positive stool culture result on days 2-7 or day 30 after enrolment of the household's index cholera case and, in the vaccine challenge cohort, was the development of symptomatic diarrhoea (defined as two or more loose stools of ≥200 mL each, or a single loose stool of ≥300 mL over a 48-h period). FINDINGS: In the household contact cohort (261 participants from 180 households), 20 (34%) of the 58 studied biomarkers were associated with protection against V cholerae infection. We identified serum antibody-dependent complement deposition targeting the O1 antigen as the most predictive correlate of protection from infection in the household contacts, whereas vibriocidal antibody titres ranked lower. A five-biomarker model predicted protection from V cholerae infection with a cross-validated area under the curve (cvAUC) of 79% (95% CI 73-85). This model also predicted protection against diarrhoea in unvaccinated volunteers challenged with V cholerae O1 after vaccination (n=67; area under the curve [AUC] 77%, 95% CI 64-90). Although a different five-biomarker model best predicted protection from the development of cholera diarrhoea in the challenged vaccinees (cvAUC 78%, 95% CI 66-91), this model did poorly at predicting protection against infection in the household contacts (AUC 60%, 52-67). INTERPRETATION: Several biomarkers predict protection better than vibriocidal titres. A model based on protection against infection among household contacts was predictive of protection against both infection and diarrhoeal illness in challenged vaccinees, suggesting that models based on observed conditions in a cholera-endemic population might be more likely to identify broadly applicable correlates of protection than models trained on single experimental settings. FUNDING: National Institute of Allergy and Infectious Diseases and National Institute of Child Health and Human Development, National Institutes of Health.


Assuntos
Cólera , Vibrio cholerae , Criança , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , Anticorpos Antibacterianos , Bangladesh/epidemiologia , Diarreia/epidemiologia
6.
Front Immunol ; 13: 1052374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578502

RESUMO

The longevity of immune responses induced by different degrees of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection provides information important to understanding protection against coronavirus disease 2019 (COVID-19). Here, we report the persistence of SARS-CoV-2 spike receptor-binding domain (RBD) specific antibodies and memory B cells recognizing this antigen in sequential samples from patients in Bangladesh with asymptomatic, mild, moderate and severe COVID-19 out to six months following infection. Since the development of long-lived memory B cells, as well as antibody production, is likely to be dependent on T helper (Th) cells, we also investigated the phenotypic changes of Th cells in COVID-19 patients over time following infection. Our results show that patients with moderate to severe COVID-19 mounted significant levels of IgG antibodies out to six months following infection, while patients with asymptomatic or mild disease had significant levels of IgG antibodies out to 3 months following infection, but these then fell more rapidly at 6 months than in patients with higher disease severity. Patients from all severity groups developed circulating memory B cells (MBCs) specific to SARS-CoV-2 spike RBD by 3 months following infection, and these persisted until the last timepoint measured at 6 months. A T helper cell response with an effector memory phenotype was observed following infection in all symptomatic patients, while patients with asymptomatic infection had no significant increases in effector Th1, Th2 and Th17 effector memory cell responses. Our results suggest that the strength and magnitude of antibody and memory B cells induced following SARS-CoV-2 infection depend on the severity of the disease. Polarization of the Th cell response, with an increase in Th effector memory cells, occurs in symptomatic patients by day 7 following infection, with increases seen in Th1, Th2, Th17 and follicular helper T cell subsets.


Assuntos
COVID-19 , Humanos , Bangladesh/epidemiologia , Células B de Memória , SARS-CoV-2 , Imunoglobulina G , Anticorpos Antivirais , Gravidade do Paciente , Células Th17
7.
mBio ; 13(6): e0190022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286520

RESUMO

Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease.


Assuntos
Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiologia , Estudos Transversais , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina A , Bangladesh/epidemiologia
8.
IJID Reg ; 2: 198-203, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35721426

RESUMO

Design: A cross-sectional study was conducted amongst household members in 32 districts of Bangladesh to build knowledge about disease epidemiology and seroepidemiology of coronavirus disease 2019 (COVID-19). Objective: Antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in people between April and October 2020. Results: The national seroprevalence rates of immunoglobulin G (IgG) and IgM were estimated to be 30.4% and 39.7%, respectively. In Dhaka, the seroprevalence of IgG was 35.4% in non-slum areas and 63.5% in slum areas. In areas outside of Dhaka, the seroprevalence of IgG was 37.5% in urban areas and 28.7% in rural areas. Between April and October 2020, the highest seroprevalence rate (57% for IgG and 64% for IgM) was observed in August. IgM antibody was more prevalent in younger participants, while older participants had more frequent IgG seropositivity. Follow-up specimens from patients with COVID-19 and their household members suggested that both IgG and IgM seropositivity increased significantly at day 14 and day 28 compared with day 1 after enrolment. Conclusions: SARS-CoV-2 had spread extensively in Bangladesh by October 2020. This highlights the importance of monitoring seroprevalence data, particularly with the emergence of new SARS-CoV-2 variants over time.

9.
PLoS Negl Trop Dis ; 16(5): e0010411, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551522

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes with a semi-conserved TCRα, activated by the presentation of vitamin B metabolites by the MHC-I related protein, MR1, and with diverse innate and adaptive effector functions. The role of MAIT cells in acute intestinal infections, especially at the mucosal level, is not well known. Here, we analyzed the presence and phenotype of MAIT cells in duodenal biopsies and paired peripheral blood samples, in patients during and after culture-confirmed Vibrio cholerae O1 infection. Immunohistochemical staining of duodenal biopsies from cholera patients (n = 5, median age 32 years, range 26-44, 1 female) identified MAIT cells in the lamina propria of the crypts, but not the villi. By flow cytometry (n = 10, median age 31 years, range 23-36, 1 female), we showed that duodenal MAIT cells are more activated than peripheral MAIT cells (p < 0.01 across time points), although there were no significant differences between duodenal MAIT cells at day 2 and day 30. We found fecal markers of intestinal permeability and inflammation to be correlated with the loss of duodenal (but not peripheral) MAIT cells, and single-cell sequencing revealed differing T cell receptor usage between the duodenal and peripheral blood MAIT cells. In this preliminary report limited by a small sample size, we show that MAIT cells are present in the lamina propria of the duodenum during V. cholerae infection, and more activated than those in the blood. Future work into the trafficking and tissue-resident function of MAIT cells is warranted.


Assuntos
Cólera , Células T Invariantes Associadas à Mucosa , Vibrio cholerae O1 , Duodeno , Feminino , Humanos , Mucosa Intestinal
10.
Acad Med ; 97(10): 1467-1473, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108233

RESUMO

Scientific research has been changing medical practice at an increasing pace. To keep up with this change, physicians of the future will need to be lifelong learners with the skills to engage with emerging science and translate it into clinical care. How medical schools can best prepare students for ongoing scientific change remains unclear. Adding to the challenge is reduced time allocated to basic science in curricula and rapid expansion of relevant scientific fields. A return to science with greater depth after clinical clerkships has been suggested, although few schools have adopted such curricula and implementation can present challenges. The authors describe an innovation at Harvard Medical School, the Advanced Integrated Science Courses (AISCs), which are taken after core clerkships. Students are required to take 2 such courses, which are offered in a variety of topics. Rather than factual content, the learning objectives are a set of generalizable skills to enable students to critically evaluate emerging research and its relationship to medical practice. Making these generalizable skills the defining principle of the courses has several important advantages: it allows standardization of acquired skills to be combined with diverse course topics ranging from basic to translational and population sciences; students can choose courses and projects aligned with their interests, thereby enhancing engagement, curiosity, and career relevance; schools can tailor course offerings to the interests of local faculty; and the generalizable skills delineate a unique purpose of these courses within the overall medical school curriculum. For the 3 years AISCs have been offered, students rated the courses highly and reported learning the intended skill set effectively. The AISC concept addresses the challenge of preparing students for this era of rapidly expanding science and should be readily adaptable to other medical schools.


Assuntos
Estágio Clínico , Currículo , Humanos , Aprendizagem , Faculdades de Medicina
11.
PLoS Negl Trop Dis ; 16(1): e0010102, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982773

RESUMO

BACKGROUND: COVID-19 caused by SARS-CoV-2 ranges from asymptomatic to severe disease and can cause fatal and devastating outcome in many cases. In this study, we have compared the clinical, biochemical and immunological parameters across the different disease spectrum of COVID-19 in Bangladeshi patients. METHODOLOGY/PRINCIPAL FINDINGS: This longitudinal study was conducted in two COVID-19 hospitals and also around the community in Dhaka city in Bangladesh between November 2020 to March 2021. A total of 100 patients with COVID-19 infection were enrolled and classified into asymptomatic, mild, moderate and severe cases (n = 25/group). In addition, thirty age and sex matched healthy participants were enrolled and 21 were analyzed as controls based on exclusion criteria. After enrollment (study day1), follow-up visits were conducted on day 7, 14 and 28 for the cases. Older age, male gender and co-morbid conditions were the risk factors for severe COVID-19 disease. Those with moderate and severe cases of infection had low lymphocyte counts, high neutrophil counts along with a higher neutrophil-lymphocyte ratio (NLR) at enrollment; this decreased to normal range within 42 days after the onset of symptom. At enrollment, D-dimer, CRP and ferritin levels were elevated among moderate and severe cases. The mild, moderate, and severe cases were seropositive for IgG antibody by day 14 after enrollment. Moderate and severe cases showed significantly higher IgM and IgG levels of antibodies to SARS-CoV-2 compared to mild and asymptomatic cases. CONCLUSION/SIGNIFICANCE: We report on the clinical, biochemical, and hematological parameters associated with the different severity of COVID-19 infection. We also show different profile of antibody response against SARS-CoV-2 in relation to disease severity, especially in those with moderate and severe disease manifestations compared to the mild and asymptomatic infection.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/imunologia , Índice de Gravidade de Doença , Adulto , Formação de Anticorpos , Bangladesh , Teste para COVID-19 , Estudos de Coortes , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio , Humanos , Imunoglobulina G , Estudos Longitudinais , Linfócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos , Fatores de Risco , SARS-CoV-2 , Carga Viral
12.
Front Immunol ; 13: 1067737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618409

RESUMO

Background: Immune responses that target sialidase occur following natural cholera and have been associated with protection against cholera. Sialidase is a neuraminidase that facilitates the binding of cholera toxin (CT) to intestinal epithelial cells. Despite this, little is known about age-related sialidase-specific immune responses and the impact of nutritional status and co-infection on sialidase-specific immunity. Methods: We enrolled 50 culture-confirmed Vibrio cholerae O1 cholera cases presenting to the icddr,b Dhaka hospital with moderate to severe dehydration. We evaluated antibody responses out to 18 months (day 540) following cholera. We assessed immune responses targeting sialidase, lipopolysaccharide (LPS), cholera toxin B subunit (CtxB), and vibriocidal responses. We also explored the association of sialidase-specific immune responses to nutritional parameters and parasitic co-infection of cases. Results: This longitudinal cohort study showed age-dependent differences in anti-sialidase immune response after natural cholera infection. Adult patients developed plasma anti-sialidase IgA and IgG responses after acute infection (P<0.05), which gradually decreased from day 30 on. In children, no significant anti-sialidase IgA, IgM, and IgG response was seen with the exception of a late IgG response at study day 540 (p=0.05 compared to adults). There was a correlation between anti-sialidase IgA with vibriocidal titers, as well as anti-sialidase IgA and IgG with anti-LPS and anti-CtxB antibody responses in adult patients, whereas in children, a significant positive correlation was seen only between anti-sialidase IgA and CtxB IgA responses. Stunted children showed significantly lower anti-sialidase IgA, IgG, and IgM antibody responses and higher LPS IgG and IgM antibody responses than healthy children. The anti-sialidase IgA and IgG responses were significantly higher in cases with concomitant parasitic infection. Conclusion: Our data suggest that cholera patients develop age-distinct systemic and mucosal immune responses against sialidase. The stunted children have a lower anti-sialidase antibody response which may be associated with gut enteropathy and the neuraminidase plays an important role in augmented immune response in cholera patients infected with parasites.


Assuntos
Cólera , Coinfecção , Adulto , Criança , Humanos , Neuraminidase , Estudos Longitudinais , Bangladesh , Linfócitos B , Memória Imunológica , Imunoglobulina G , Anticorpos Antibacterianos , Lipopolissacarídeos , Estudos de Coortes , Toxina da Cólera , Imunoglobulina M , Imunoglobulina A
13.
Trop Med Infect Dis ; 6(4)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34842841

RESUMO

Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell cholera vaccines in young children is poor. An obstacle to the development of improved cholera vaccines is the need for a better understanding of the primary mechanisms of cholera immunity and identification of improved correlates of protection. Considerable progress has been made over the last decade in understanding the adaptive and innate immune responses to cholera disease as well as V. cholerae infection. This review will assess what is currently known about the systemic, mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.

14.
Vaccine ; 39(47): 6936-6946, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34716040

RESUMO

There is a need to develop cholera vaccines that are protective in young children under 5 years of age, which induce long-term immunity, and which can be incorporated into the Expanded Programme of Immunization (EPI) in cholera-endemic countries. The degree of protection afforded by currently available oral cholera vaccines (OCV) to young children is significantly lower than that induced by vaccination of older vaccine recipients. Immune responses that protect against cholera target the O-specific polysaccharide (OSP) of Vibrio cholerae, and young children have poor immunological responses to bacterial polysaccharides, which are T cell independent antigens. To overcome this, we have developed a cholera conjugate vaccine (CCV) containing the OSP of V. cholerae O1, the main cause of endemic and epidemic cholera. Here, we describe production of CCV through a scalable manufacturing process and preclinical evaluation of immunogenicity in the presence and absence of aluminum phosphate (alum) as an adjuvant. The vaccine displays V. cholerae O1 Inaba OSP in sun-burst display via single point attachment of core oligosaccharide to a recombinant tetanus toxoid heavy chain fragment (rTTHc). Two different pilot-scale production batches of non-GMP CCV were manufactured and characterized in terms of physico-chemical properties and immunogenicity. In preclinical testing, the vaccine induced OSP- and lipopolysaccharide (LPS)-specific IgG and IgM responses, vibriocidal responses, memory B cell responses, and protection in a V. cholerae O1 challenge model. The addition of alum to the administered vaccine increased OSP-specific immune responses. These results support evaluation of CCV in humans.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Administração Oral , Anticorpos Antibacterianos , Pré-Escolar , Cólera/prevenção & controle , Humanos , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Células B de Memória , Vacinas Conjugadas
15.
mSystems ; 6(4): e0088921, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34427503

RESUMO

Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.

17.
mSphere ; 6(4): e0011421, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232076

RESUMO

Cholera caused by Vibrio cholerae O139 could reemerge, and proactive development of an effective O139 vaccine would be prudent. To define immunoreactive and potentially immunogenic carbohydrate targets of Vibrio cholerae O139, we assessed immunoreactivities of various O-specific polysaccharide (OSP)-related saccharides with plasma from humans hospitalized with cholera caused by O139, comparing responses to those induced in recipients of a commercial oral whole-cell killed bivalent (O1 and O139) cholera vaccine (WC-O1/O139). We also assessed conjugate vaccines containing selected subsets of these saccharides for their ability to induce protective immunity using a mouse model of cholera. We found that patients with wild-type O139 cholera develop IgM, IgA, and IgG immune responses against O139 OSP and many of its fragments, but we were able to detect only a moderate IgM response to purified O139 OSP-core, and none to its fragments, in immunologically naive recipients of WC-O1/O139. We found that immunoreactivity of O139-specific polysaccharides with antibodies elicited by wild-type infection markedly increase when saccharides contain colitose and phosphate residues, that a synthetic terminal tetrasaccharide fragment of OSP is more immunoreactive and protectively immunogenic than complete OSP, that native OSP-core is a better protective immunogen than the synthetic OSP lacking core, and that functional vibriocidal activity of antibodies predicts in vivo protection in our model but depends on capsule thickness. Our results suggest that O139 OSP-specific responses are not prominent following vaccination with a currently available oral cholera vaccine in immunologically naive humans and that vaccines targeting V. cholerae O139 should be based on native OSP-core or terminal tetrasaccharide. IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae serogroup O1 or O139. Protection against cholera is serogroup specific, and serogroup specificity is defined by O-specific polysaccharide (OSP). Little is known about immunity to O139 OSP. In this study, we used synthetic fragments of the O139 OSP to define immune responses to OSP in humans recovering from cholera caused by V. cholerae O139, compared these responses to those induced by the available O139 vaccine, and evaluated O139 fragments in next-generation conjugate vaccines. We found that the terminal tetrasaccharide of O139 is a primary immune target but that the currently available bivalent cholera vaccine poorly induces an anti-O139 OSP response in immunologically naive individuals.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas contra Cólera/imunologia , Cólera/prevenção & controle , Antígenos O/imunologia , Vibrio cholerae O139/imunologia , Adolescente , Adulto , Idoso , Animais , Criança , Cólera/imunologia , Vacinas contra Cólera/administração & dosagem , Convalescença , Modelos Animais de Doenças , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Vacinação , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/normas , Adulto Jovem
18.
Am J Trop Med Hyg ; 104(6): 2024-2030, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33872211

RESUMO

Oral cholera vaccination protects against cholera; however, responses in young children are low and of short duration. The best current correlates of protection against cholera target Vibrio cholerae O-specific polysaccharide (anti-OSP), including vibriocidal responses. A cholera conjugate vaccine has been developed that induces anti-OSP immune responses, including memory B-cell responses. To address whether cholera conjugate vaccine would boost immune responses following oral cholera vaccination, we immunized mice with oral cholera vaccine Inaba CVD 103-HgR or buffer only (placebo) on day 0, followed by parenteral boosting immunizations on days 14, 42, and 70 with cholera conjugate vaccine Inaba OSP: recombinant tetanus toxoid heavy chain fragment or phosphate buffered saline (PBS)/placebo. Compared with responses in mice immunized with oral vaccine alone or intramuscular cholera conjugate vaccine alone, mice receiving combination vaccination developed significantly higher vibriocidal, IgM OSP-specific serum responses and OSP-specific IgM memory B-cell responses. A combined vaccination approach, which includes oral cholera vaccination followed by parenteral cholera conjugate vaccine boosting, results in increased immune responses that have been associated with protection against cholera. These results suggest that such an approach should be evaluated in humans.


Assuntos
Anticorpos Antibacterianos/sangue , Vacinas contra Cólera/imunologia , Cólera/prevenção & controle , Vacinação/métodos , Vacinas Combinadas/imunologia , Administração Oral , Animais , Cólera/imunologia , Vacinas contra Cólera/administração & dosagem , Feminino , Imunização Secundária , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Memória Imunológica , Camundongos , Vacinas Combinadas/administração & dosagem , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
19.
mSphere ; 6(2)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910997

RESUMO

Cholera remains a major public health problem in resource-limited countries. Vaccination is an important strategy to prevent cholera, but currently available vaccines provide only 3 to 5 years of protection. Understanding immune responses to cholera antigens in naturally infected individuals may elucidate which of these are key to longer-term protection seen following infection. We recently identified Vibrio cholerae O1 sialidase, a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells, as immunogenic following infection in two recent high-throughput screens. Here, we present systemic, mucosal, and memory immune responses to sialidase in cholera index cases and evaluated whether systemic responses to sialidase correlated with protection using a cohort of household contacts. Overall, we found age-related differences in antisialidase immune response following cholera. Adults developed significant plasma anti-sialidase IgA, IgG, and IgM responses following infection, whereas older children (≥5 years) developed both IgG and IgM responses, and younger children only developed IgM responses. Neither older children nor younger children had a rise in IgA responses over the convalescent phase of infection (day 7/day 30). On evaluation of mucosal responses and memory B-cell responses to sialidase, we found adults developed IgA antibody-secreting cell (ASC) and memory B-cell responses. Finally, in household contacts, the presence of serum anti-sialidase IgA, IgG, and IgM antibodies at enrollment was associated with a decrease in the risk of subsequent infection. These data show cholera patients develop age-related immune responses against sialidase and suggest that immune responses that target sialidase may contribute to protective immunity against cholera.IMPORTANCE Cholera infection can result in severe dehydration that may lead to death within a short period of time if not treated immediately. Vaccination is an important strategy to prevent the disease. Oral cholera vaccines provide 3 to 5 years of protection, with 60% protective efficacy, while natural infection provides longer-term protection than vaccination. Understanding the immune responses after natural infection is important to better understand immune responses to antigens that mediate longer-term protection. Sialidase is a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells. We show here that patients with cholera develop systemic, mucosal, and memory B-cell immune responses to the sialidase antigen of Vibrio cholerae O1 and that plasma responses targeting this antigen correlate with protection.


Assuntos
Anticorpos Antibacterianos/sangue , Cólera/imunologia , Cólera/prevenção & controle , Memória Imunológica , Neuraminidase/imunologia , Vibrio cholerae O1/enzimologia , Vibrio cholerae O1/imunologia , Adolescente , Adulto , Fatores Etários , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina A/análise , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879588

RESUMO

Vibrio cholerae causes the severe diarrheal disease cholera. Clinical disease and current oral cholera vaccines generate antibody responses associated with protection. Immunity is thought to be largely mediated by lipopolysaccharide (LPS)-specific antibodies, primarily targeting the O-antigen. However, the properties and protective mechanism of functionally relevant antibodies have not been well defined. We previously reported on the early B cell response to cholera in a cohort of Bangladeshi patients, from which we characterized a panel of human monoclonal antibodies (MAbs) isolated from acutely induced plasmablasts. All antibodies in that previous study were expressed in an IgG1 backbone irrespective of their original isotype. To clearly determine the impact of affinity, immunoglobulin isotype and subclass on the functional properties of these MAbs, we re-engineered a subset of low- and high-affinity antibodies in different isotype and subclass immunoglobulin backbones and characterized the impact of these changes on binding, vibriocidal, agglutination, and motility inhibition activity. While the high-affinity antibodies bound similarly to O-antigen, irrespective of isotype, the low-affinity antibodies displayed significant avidity differences. Interestingly, despite exhibiting lower binding properties, variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies, suggesting that how the MAb binds to the O-antigen may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.IMPORTANCE Immunity to the severe diarrheal disease cholera is largely mediated by lipopolysaccharide (LPS)-specific antibodies. However, the properties and protective mechanisms of functionally relevant antibodies have not been well defined. Here, we have engineered low and high-affinity LPS-specific antibodies in different immunoglobulin backbones in order to assess the impact of affinity, immunoglobulin isotype, and subclass on binding, vibriocidal, agglutination, and motility inhibition functional properties. Importantly, we found that affinity did not directly dictate functional potency since variants derived from the low-affinity MAbs had comparable agglutination and motility inhibition properties to the potently binding antibodies. This suggests that how the antibody binds sterically may be critical to function. In addition, not only pentameric IgM and dimeric IgA, but also monomeric IgA, was remarkably more potent than their IgG counterparts at inhibiting motility. Finally, analyzing highly purified F(ab) versions of these antibodies, we show that LPS cross-linking is essential for motility inhibition.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Antígenos O/imunologia , Vibrio cholerae O1/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Monoclonais/classificação , Anticorpos Monoclonais/genética , Sítios de Ligação de Anticorpos , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Isotipos de Imunoglobulinas/classificação , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/imunologia , Vibrio cholerae O1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA