Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Addict Biol ; 20(2): 259-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24397780

RESUMO

The neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later. However, significant tolerance to LORR was evident 1 day after CIE in C57BL/6J and PSD-95 knockouts, but absent in GluN2A knockouts. These data suggest a role for GluN2A in tolerance, extending evidence that human GluN2A gene variation is involved in alcohol dependence.


Assuntos
Intoxicação Alcoólica/genética , Ansiedade/genética , Depressores do Sistema Nervoso Central/farmacologia , Tolerância a Medicamentos/genética , Etanol/farmacologia , Guanilato Quinases/genética , Proteínas de Membrana/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinência a Substâncias/genética , Animais , Proteína 4 Homóloga a Disks-Large , Camundongos , Camundongos Knockout
2.
Addict Biol ; 20(2): 345-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24666522

RESUMO

Chronic intermittent ethanol (CIE) alters neural functions and behaviors mediated by the dorsolateral striatum (DLS) and prefrontal cortex. Here, we examined the effects of prolonged (16-bout) CIE on DLS plasticity and DLS-mediated behaviors. Ex vivo electrophysiological recordings revealed loss in efficacy of DLS synaptically induced activation and absent long-term depression after CIE. CIE increased two-bottle choice drinking and impaired Pavlovian-to-instrumental transfer but not discriminated approach. These data suggest prolonged CIE impaired DLS plasticity, to produce associated changes in drinking and cue-controlled reward-seeking. Given recent evidence that less-prolonged CIE can promote certain dorsal striatal-mediated behaviors, CIE may drive chronicity-dependent adaptations in corticostriatal systems regulating behavior.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Recompensa , Animais , Condicionamento Clássico/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Transferência de Experiência/efeitos dos fármacos
3.
Exp Neurol ; 250: 260-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100022

RESUMO

Serotonin is critical for shaping the development of neural circuits regulating emotion. Pet-1 (FEV-1) is an ETS-domain transcription factor essential for differentiation and forebrain targeting of serotonin neurons. Constitutive Pet-1 knockout (KO) causes major loss of serotonin neurons and forebrain serotonin availability, and behavioral abnormalities. We phenotyped Pet-1 KO mice for fear conditioning and extinction, and on a battery of assays for anxiety- and depression-related behaviors. Morphology of Golgi-stained neurons in basolateral amygdala (BLA) and prelimbic cortex was examined. Using human imaging genetics, a common variant (rs860573) in the PET-1 (FEV) gene was tested for effects on threat-related amygdala reactivity and psychopathology in 88 Asian-ancestry subjects. Pet-1 KO mice exhibited increased acquisition and expression of fear, and elevated fear recovery following extinction, relative to wild-type (WT). BLA dendrites of Pet-1 KO mice were significantly longer than in WT. Human PET-1 variation associated with differences in amygdala threat processing and psychopathology. This novel evidence for the role of Pet-1 in fear processing and dendritic organization of amygdala neurons and in human amygdala threat processing extends a growing literature demonstrating the influence of genetic variation in the serotonin system on emotional regulation via effects on structure and function of underlying corticolimbic circuitry.


Assuntos
Tonsila do Cerebelo/fisiologia , Proteínas de Ligação a DNA/genética , Emoções/fisiologia , Medo/fisiologia , Predisposição Genética para Doença/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Transtornos de Ansiedade/genética , Condicionamento Clássico , Dendritos/ultraestrutura , Extinção Psicológica/fisiologia , Feminino , Genótipo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Adulto Jovem
4.
Proc Natl Acad Sci U S A ; 110(36): 14783-8, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959891

RESUMO

Drug addictions including alcoholism are characterized by degradation of executive control over behavior and increased compulsive drug seeking. These profound behavioral changes are hypothesized to involve a shift in the regulation of behavior from prefrontal cortex to dorsal striatum (DLS). Studies in rodents have shown that ethanol disrupts cognitive processes mediated by the prefrontal cortex, but the potential effects of chronic ethanol on DLS-mediated cognition and learning are much less well understood. Here, we first examined the effects of chronic EtOH on DLS neuronal morphology, synaptic plasticity, and endocannabinoid-CB1R signaling. We next tested for ethanol-induced changes in striatal-related learning and DLS in vivo single-unit activity during learning. Mice exposed to chronic intermittent ethanol (CIE) vapor exhibited expansion of dendritic material in DLS neurons. Following CIE, DLS endocannabinoid CB1 receptor signaling was down-regulated, and CB1 receptor-dependent long-term depression at DLS synapses was absent. CIE mice showed facilitation of DLS-dependent pairwise visual discrimination and reversal learning, relative to air-exposed controls. CIE mice were also quicker to extinguish a stimulus-reward instrumental response and faster to reduce Pavlovian approach behavior under an omission schedule. In vivo single-unit recording during learning revealed that CIE mice had augmented DLS neuronal activity during correct responses. Collectively, these findings support a model in which chronic ethanol causes neuroadaptations in the DLS that prime for greater DLS control over learning. The shift to striatal dominance over behavior may be a critical step in the progression of alcoholism.


Assuntos
Corpo Estriado/efeitos dos fármacos , Etanol/farmacologia , Aprendizagem/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Análise de Variância , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Regulação para Baixo/efeitos dos fármacos , Etanol/administração & dosagem , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Fatores de Tempo
5.
Biol Mood Anxiety Disord ; 3(1): 13, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23830244

RESUMO

BACKGROUND: Various neuropsychiatric conditions, including posttraumatic stress disorder (PTSD), are characterized by deficient fear extinction, but individuals differ greatly in risk for these. While there is growing evidence that fear extinction is influenced by certain procedural variables, it is unclear how these influences might vary across individuals and subpopulations. To model individual differences in fear extinction, prior studies identified a strain of inbred mouse, 129S1/SvImJ (S1), which exhibits a profound deficit in fear extinction, as compared to other inbred strains, such as C57BL/6J (B6). METHODS: Here, we assessed the effects of procedural variables on the impaired extinction phenotype of the S1 strain and, by comparison, the extinction-intact B6 strain. The variables studied were 1) the interval between conditioning and extinction, 2) the interval between cues during extinction training, 3) single-cue exposure before extinction training, and 4) extinction of a second-order conditioned cue. RESULTS: Conducting extinction training soon after ('immediately') conditioning attenuated fear retrieval in S1 mice and impaired extinction in B6 mice. Spacing cue presentations with long inter-trial intervals during extinction training augmented fear in S1 and B6 mice. The effect of spacing was lost with one-trial fear conditioning in B6, but not S1 mice. A single exposure to a conditioned cue before extinction training did not alter extinction retrieval, either in B6 or S1 mice. Both the S1 and B6 strains exhibited robust second-order fear conditioning, in which a cue associated with footshock was sufficient to serve as a conditioned exciter to condition a fear association to a second cue. B6 mice extinguished the fear response to the second-order conditioned cue, but S1 mice failed to do so. CONCLUSIONS: These data provide further evidence that fear extinction is strongly influenced by multiple procedural variables and is so in a highly strain-dependent manner. This suggests that the efficacy of extinction-based behavioral interventions, such as exposure therapy, for trauma-related anxiety disorders will be determined by the procedural parameters employed and the degree to which the patient can extinguish.

6.
Alcohol Clin Exp Res ; 37(2): 223-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22934986

RESUMO

BACKGROUND: Stimulating the glycine(B) binding site on the N-methyl-d-aspartate ionotropic glutamate receptor (NMDAR) has been proposed as a novel mechanism for modulating behavioral effects of ethanol (EtOH) that are mediated via the NMDAR, including acute intoxication. Here, we pharmacologically interrogated this hypothesis in mice. METHODS: Effects of systemic injection of the glycine(B) agonist, d-serine, the GlyT-1 glycine transporter inhibitor, ALX-5407, and the glycine(B) antagonist, L-701,324, were tested for the effects on EtOH-induced ataxia, hypothermia, and loss of righting reflex (LORR) duration in C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mice. Effects of the glycine(B) partial agonist, d-cycloserine (DCS), the GlyT-1 inhibitor, N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), and the glycine(B) antagonist, 5,7-dichlorokynurenic (DCKA), on EtOH-induced LORR duration were also tested. Interaction effects on EtOH-induced LORR duration were examined via combined treatment with d-serine and ALX-5407, d-serine and MK-801, d-serine and L-701,324, as well as L-701,324 and ALX-5407, in B6 mice, and d-serine in GluN2A and PSD-95 knockout mice. The effect of dietary depletion of magnesium (Mg), an element that interacts with the glycine(B) site, was also tested. RESULTS: Neither d-serine, DCS, ALX-5407, nor NFPS significantly affected EtOH intoxication on any of the measures or strains studied. L-701,324, but not DCKA, dose-dependently potentiated the ataxia-inducing effects of EtOH and increased EtOH-induced (but not pentobarbital-induced) LORR duration. d-serine did not have interactive effects on EtOH-induced LORR duration when combined with ALX-5407. The EtOH-potentiating effects of L-701,324, but not MK-801, on LORR duration were prevented by d-serine, but not ALX-5407. Mg depletion potentiated LORR duration in B6 mice and was lethal in a large proportion of S1 mice. CONCLUSIONS: Glycine(B) site activation failed to produce the hypothesized reduction in EtOH intoxication across a range of measures and genetic strains, but blockade of the glycine(B) site potentiated EtOH intoxication. These data suggest endogenous activity at the glycine(B) opposes EtOH intoxication, but it may be difficult to pharmacologically augment this action, at least in nondependent subjects, perhaps because of physiological saturation of the glycine(B) site.


Assuntos
Intoxicação Alcoólica/tratamento farmacológico , Quinolonas/uso terapêutico , Receptores de Glicina/agonistas , Receptores de Glicina/antagonistas & inibidores , Sarcosina/análogos & derivados , Serina/uso terapêutico , Intoxicação Alcoólica/metabolismo , Animais , Ataxia/induzido quimicamente , Ataxia/tratamento farmacológico , Ciclosserina/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/uso terapêutico , Quimioterapia Combinada , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Guanilato Quinases/genética , Hipotermia/induzido quimicamente , Hipotermia/tratamento farmacológico , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/farmacologia , Magnésio/metabolismo , Magnésio/uso terapêutico , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinolonas/administração & dosagem , Quinolonas/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Reflexo de Endireitamento/efeitos dos fármacos , Sarcosina/administração & dosagem , Sarcosina/farmacologia , Sarcosina/uso terapêutico , Serina/administração & dosagem , Serina/farmacologia
7.
Nat Neurosci ; 15(10): 1359-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941108

RESUMO

Alcoholism is frequently co-morbid with post-traumatic stress disorder, but it is unclear how alcohol affects the neural circuits mediating recovery from trauma. We found that chronic intermittent ethanol (CIE) impaired fear extinction and remodeled the dendritic arbor of medial prefrontal cortical (mPFC) neurons in mice. CIE impaired extinction encoding by infralimbic mPFC neurons in vivo and functionally downregulated burst-mediating NMDA GluN1 receptors. These findings suggest that alcohol may increase risk for trauma-related anxiety disorders by disrupting mPFC-mediated extinction of fear.


Assuntos
Dendritos/ultraestrutura , Regulação para Baixo/efeitos dos fármacos , Etanol/farmacologia , Extinção Psicológica/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia , Potenciais de Ação/fisiologia , Animais , Regulação para Baixo/fisiologia , Etanol/administração & dosagem , Extinção Psicológica/fisiologia , Medo/fisiologia , Camundongos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
8.
Neuropsychopharmacology ; 37(6): 1534-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22334122

RESUMO

Mood and anxiety disorders develop in some but not all individuals following exposure to stress and psychological trauma. However, the factors underlying individual differences in risk and resilience for these disorders, including genetic variation, remain to be determined. Isogenic inbred mouse strains provide a valuable approach to elucidating these factors. Here, we performed a comprehensive examination of the extinction-impaired 129S1/SvImJ (S1) inbred mouse strain for multiple behavioral, autonomic, neuroendocrine, and corticolimbic neuronal morphology phenotypes. We found that S1 exhibited fear overgeneralization to ambiguous contexts and cues, impaired context extinction and impaired safety learning, relative to the (good-extinguishing) C57BL/6J (B6) strain. Fear overgeneralization and impaired extinction was rescued by treatment with the front-line anxiety medication fluoxetine. Telemetric measurement of electrocardiogram signals demonstrated autonomic disturbances in S1 including poor recovery of fear-induced suppression of heart rate variability. S1 with a history of chronic restraint stress displayed an attenuated corticosterone (CORT) response to a novel, swim stressor. Conversely, previously stress-naive S1 showed exaggerated CORT responses to acute restraint stress or extinction training, insensitivity to dexamethasone challenge, and reduced hippocampal CA3 glucocorticoid receptor mRNA, suggesting downregulation of negative feedback control of the hypothalamic-pituitary-adrenal axis. Analysis of neuronal morphology in key neural nodes within the fear and extinction circuit revealed enlarged dendritic arbors in basolateral amygdala neurons in S1, but normal infralimbic cortex and prelimbic cortex dendritic arborization. Collectively, these data provide convergent support for the utility of the S1 strain as a tractable model for elucidating the neural, molecular and genetic basis of persistent, excessive fear.


Assuntos
Tonsila do Cerebelo/patologia , Transtornos de Ansiedade/complicações , Transtornos de Ansiedade/patologia , Doenças do Sistema Nervoso Autônomo/etiologia , Dendritos/patologia , Doenças do Sistema Endócrino/etiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Inibição Psicológica , Análise de Variância , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Aprendizagem da Esquiva/efeitos dos fármacos , Corticosterona/sangue , Discriminação Psicológica , Modelos Animais de Doenças , Eletrocardiografia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Fluoxetina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides , Telemetria
9.
Addict Biol ; 16(3): 428-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21309945

RESUMO

The synaptic signaling mechanisms mediating the behavioral effects of ethanol (EtOH) remain poorly understood. Post-synaptic density 95 (PSD-95, SAP-90, Dlg4) is a key orchestrator of N-methyl-D-aspartate receptors (NMDAR) and glutamatergic synapses, which are known to be major sites of EtOH's behavioral actions. However, the potential contribution of PSD-95 to EtOH-related behaviors has not been established. Here, we evaluated knockout (KO) mice lacking PSD-95 for multiple measures of sensitivity to the acute intoxicating effects of EtOH (ataxia, hypothermia, sedation/hypnosis), EtOH drinking under conditions of free access and following deprivation, acquisition and long-term retention of EtOH conditioned place preference (CPP) (and lithium chloride-induced conditioned taste aversion), and intoxication-potentiating responses to NMDAR antagonism. PSD-95 KO exhibited increased sensitivity to the sedative/hypnotic, but not ataxic or hypothermic, effects of acute EtOH relative to wild-type controls (WT). PSD-95 KO consumed less EtOH than WT, particularly at higher EtOH concentrations, although increases in KO drinking could be induced by concentration-fading and deprivation. PSD-95 KO showed normal EtOH CPP 1 day after conditioning, but showed significant aversion 2 weeks later. Lithium chloride-induced taste aversion was impaired in PSD-95 KO at both time points. Finally, the EtOH-potentiating effects of the NMDAR antagonist MK-801 were intact in PSD-95 KO at the dose tested. These data reveal a major, novel role for PSD-95 in mediating EtOH behaviors, and add to growing evidence that PSD-95 is a key mediator of the effects of multiple abused drugs.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Intoxicação Alcoólica/genética , Intoxicação Alcoólica/psicologia , Aprendizagem por Associação/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Guanilato Quinases/genética , Proteínas de Membrana/genética , Meio Social , Animais , Antimaníacos/farmacologia , Proteína 4 Homóloga a Disks-Large , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Injeções Intraperitoneais , Cloreto de Lítio/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Paladar/efeitos dos fármacos , Paladar/genética
10.
Am J Psychiatry ; 167(12): 1508-17, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20952458

RESUMO

OBJECTIVE: Research is increasingly linking autism spectrum disorders and other neurodevelopmental disorders to synaptic abnormalities ("synaptopathies"). PSD-95 (postsynaptic density-95, DLG4) orchestrates protein-protein interactions at excitatory synapses and is a major functional bridge interconnecting a neurexinneuroligin-SHANK pathway implicated in autism spectrum disorders. METHOD: The authors characterized behavioral, dendritic, and molecular phenotypic abnormalities relevant to autism spectrum disorders in mice with PSD-95 deletion (Dlg4⁻(/)⁻). The data from mice led to the identification of single-nucleotide polymorphisms (SNPs) in human DLG4 and the examination of associations between these variants and neural signatures of Williams' syndrome in a normal population, using functional and structural neuroimaging. RESULTS: Dlg4⁻(/)⁻ showed increased repetitive behaviors, abnormal communication and social behaviors, impaired motor coordination, and increased stress reactivity and anxiety-related responses. Dlg4⁻(/)⁻ had subtle dysmorphology of amygdala dendritic spines and altered forebrain expression of various synaptic genes, including Cyln2, which regulates cytoskeletal dynamics and is a candidate gene for Williams' syndrome. A signifi-cant association was observed between variations in two human DLG4 SNPs and reduced intraparietal sulcus volume and abnormal cortico-amygdala coupling, both of which characterize Williams' syndrome. CONCLUSIONS: These findings demonstrate that DLG4 gene disruption in mice produces a complex range of behavioral and molecular abnormalities relevant to autism spectrum disorders and Williams' syndrome. The study provides an initial link between human DLG4 gene variation and key neural endophenotypes of Williams' syndrome and perhaps corticoamygdala regulation of emotional and social processes more generally.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Deleção de Genes , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Síndrome de Williams/genética , Adulto , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/ultraestrutura , Animais , Comportamento Animal , Criança , Transtornos Globais do Desenvolvimento Infantil/patologia , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Feminino , Guanilato Quinases , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/patologia , Lobo Parietal/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Prosencéfalo/metabolismo , Síndrome de Williams/patologia , Síndrome de Williams/fisiopatologia
11.
J Neurosci ; 30(15): 5357-67, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20392957

RESUMO

Stress is a major risk factor for numerous neuropsychiatric diseases. However, susceptibility to stress and the qualitative nature of stress effects on behavior differ markedly among individuals. This is partly because of the moderating influence of genetic factors. Inbred mouse strains provide a relatively stable and restricted range of genetic and environmental variability that is valuable for disentangling gene-stress interactions. Here, we screened a panel of inbred strains for anxiety- and depression-related phenotypes at baseline (trait) and after exposure to repeated restraint. Two strains, DBA/2J and C57BL/6J, differed in trait and restraint-induced anxiety-related behavior (dark/light exploration, elevated plus maze). Gene expression analysis of amygdala, medial prefrontal cortex, and hippocampus revealed divergent expression in DBA/2J and C57BL/6J both at baseline and after repeated restraint. Restraint produced strain-dependent expression alterations in various genes including glutamate receptors (e.g., Grin1, Grik1). To elucidate neuronal correlates of these strain differences, we performed ex vivo analysis of glutamate excitatory neurotransmission in amygdala principal neurons. Repeated restraint augmented amygdala excitatory postsynaptic signaling and altered metaplasticity (temporal summation of NMDA receptor currents) in DBA/2J but not C57BL/6J. Furthermore, we found that the C57BL/6J-like changes in anxiety-related behavior after restraint were absent in null mutants lacking the modulatory NMDA receptor subunit Grin2a, but not the AMPA receptor subunit Gria1. Grin2a null mutants exhibited significant ( approximately 30%) loss of dendritic spines on amygdala principal neurons under nonrestraint conditions. Collectively, our data support a model in which genetic variation in glutamatergic neuroplasticity in corticolimbic circuitry underlies phenotypic variation in responsivity to stress.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Animais , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Expressão Gênica , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Receptores de AMPA/deficiência , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Restrição Física , Especificidade da Espécie , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
12.
Alcohol Clin Exp Res ; 30(8): 1322-35, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16899035

RESUMO

BACKGROUND: Neurobiological studies have identified brain areas and related molecular mechanisms involved in alcohol abuse and dependence. Specific cell types in these brain areas and their role in alcohol-related behaviors, however, have not yet been identified. This study examined the involvement of cholinergic cells in inbred alcohol-preferring rats following 1 month of alcohol drinking. Cyclin-dependent kinase 5 (Cdk5) immunoreactivity (IR), a marker of neuronal plasticity, was examined in cholinergic neurons of the nucleus accumbens (NuAcc) and prefrontal cortex (PFC) and other brain areas implicated in alcohol drinking, using dual immunocytochemical (ICC) procedures. Single Cdk5 IR was also examined in several brain areas implicated in alcohol drinking. METHODS: The experimental group self-administered alcohol using a 2-bottle-choice test paradigm with unlimited access to 10% (v/v) alcohol and water for 23 h/d for 1 month. An average of 6 g/kg alcohol was consumed daily. Control animals received identical treatment, except that both bottles contained water. Rats were perfused and brain sections were processed for ICC procedures. RESULTS: Alcohol drinking resulted in a 51% increase in Cdk5 IR cholinergic interneurons in the shell NuAcc, while in the PFC there was a 51% decrease in the percent of Cdk5 IR cholinergic interneurons in the infralimbic region and a 46% decrease in Cdk5 IR cholinergic interneurons in the prelimbic region. Additionally, single Cdk5 IR revealed a 42% increase in the central nucleus of the amygdala (CNA). CONCLUSIONS: This study identified Cdk5 neuroadaptation in cholinergic interneurons of the NuAcc and PFC and in other neurons of the CNA following 1 month of alcohol drinking. These findings contribute to our understanding of the cellular and molecular basis of alcohol drinking and toward the development of improved region and cell-specific pharmacotherapeutic and behavioral treatment programs for alcohol abuse and alcoholism.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Fibras Colinérgicas/enzimologia , Quinase 5 Dependente de Ciclina/biossíntese , Núcleo Accumbens/enzimologia , Córtex Pré-Frontal/enzimologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Consumo de Bebidas Alcoólicas/genética , Animais , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Fibras Colinérgicas/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/genética , Etanol/administração & dosagem , Feminino , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
13.
Alcohol Clin Exp Res ; 28(4): 588-97, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15100610

RESUMO

BACKGROUND: The primary goal of this study was to investigate the effects of varying doses of ethanol on cellular activation, as measured by Fos immunoreactivity, in brain areas that have been implicated in the reinforcing and anxiolytic effects of substance abuse and dependence, namely, the extended amygdala and hypothalamus. Specific regions examined included the central nucleus of the amygdala, bed nucleus of the stria terminalis, substantia innominata, and nucleus accumbens of the extended amygdala, as well as the paraventricular nucleus of the hypothalamus. The cholinergic interneurons of the nucleus accumbens were of particular interest, because these cells have recently been reported to play a pivotal role in substance abuse. METHODS: Adult Sprague-Dawley rats underwent 10 days of handling and 5 days of habituation. Animals then received an injection of saline or 0.5, 1, or 2 g/kg of ethanol. Rats were perfused 2 hr after the injections, and brain sections were processed for single Fos or dual Fos/choline acetyltransferase immunolabeling procedures. The number of Fos-positive neurons was calculated from a 0.45-mm sample area from each of the brain regions examined. RESULTS: A dose of 2 g/kg of ethanol significantly increased the number of Fos-immunoreactive neurons in the central nucleus of the amygdala by 149%, in the shell nucleus accumbens by 80%, and in the paraventricular nucleus of the hypothalamus by 321%. Additionally, 1 g/kg of ethanol significantly increased the percentage of Fos-immunoreactive cholinergic neurons in the nucleus accumbens by 59%. CONCLUSIONS: The findings reported in this study reveal region-specific and dose-dependent changes in Fos immunoreactivity in the extended amygdala and hypothalamus and, more specifically, an increase in neuronal activation of cholinergic cells in the shell nucleus accumbens. These findings contribute to our current knowledge of the brain areas and cellular microcircuits involved in the underlying basis of substance abuse and dependence.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Etanol/farmacologia , Hipotálamo/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/análise , Tonsila do Cerebelo/química , Tonsila do Cerebelo/metabolismo , Animais , Fibras Colinérgicas/química , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/metabolismo , Relação Dose-Resposta a Droga , Hipotálamo/química , Hipotálamo/metabolismo , Interneurônios/química , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Núcleo Accumbens/química , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA