Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Carbohydr Polym ; 273: 118583, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560985

RESUMO

Novel starch resources isolated from accessible botanical origins are of special interest to food scientists in the context of food security. In this study, Agriophyllum squarrosum starches (AS-1, AS-2, and AS-3) were isolated from three ecotypes of A. squarrosum seeds and compared with quinoa starch (QS). The mean particle diameter of AS granules ranged from 1.12 to 1.15 µm, and AS amylopectin had a significantly higher Mw than QS (p < 0.05). Compared with QS, AS samples had more branching and substitution of amylopectin structures. The peak viscosity, breakdown viscosity, and swelling degree of the AS samples were significantly lower than those of QS (p < 0.05). AS showed a lower crystalline degree and higher gelatinization temperatures, and the freshly cooked AS showed a slower digestibility rate than QS. The physicochemical properties and chain profiles of AS facilitate the application of AS and the domestication of A. squarrosum crops.


Assuntos
Amilopectina/química , Amilose/química , Caryophyllales/química , Sementes/química , Amilopectina/isolamento & purificação , Amilose/isolamento & purificação , Chenopodium quinoa/química , Peso Molecular , Tamanho da Partícula , Solubilidade , Temperatura , Termodinâmica , Viscosidade
2.
Int J Biol Macromol ; 187: 471-480, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34324904

RESUMO

Present study was aimed to characterize the effects of heat-moisture treatments supported by ultrasound on structural, physicochemical and digestive properties of the starch from Agriophyllum squarrosum seeds. The starch sample was subjected to heat-moisture (120°C, 25% moisture) for different durations with assisting by pre- or post-treatment of ultrasound (20 Hz, 300 W, 20 min). A. squarrosum starch exhibited the original A-type of crystalline structure after all treatments. All modified starches had lower amylose content, amylopectin molecular weight, swelling power and solubility, and higher resistant starch content than the native starch. Heat-moisture treatments and dual modifications of heat-moisture and ultrasound increased the gelatinization temperature of starch granules and significantly (p ≤ 0.05) reduced the viscosity of starch paste. Pretreatment of ultrasound enhanced the effects of heat-moisture on the viscosity properties while post-treatment of ultrasound weakened which on the gelatinization temperature, by regulating the changes of double helix structure and short-range ordered structure in starch granules tested by Fourier-transform infrared spectrometer. Scanning electron microscopy unveiled that A. squarrosum starch pretreated by ultrasound became more susceptible to heat moisture in morphology. This work was very important for the deep excavation of the characteristics of A. squarrosum starch and the effective application of ultrasound in starch modifications.


Assuntos
Amaranthaceae , Temperatura Alta , Sementes , Amido/química , Ultrassom , Água/química , Amaranthaceae/química , Configuração de Carboidratos , Cristalização , Sementes/química , Amido/isolamento & purificação , Viscosidade
3.
Food Chem ; 360: 129929, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33989884

RESUMO

Ultrasound is increasingly used for physicochemical modification of food systems as a green technology. Effects of heat-moisture treatment (HMT) assisted by pre- and post-treatment of ultrasound on physicochemical, structural and digestive properties of pea starch was investigated. Pea starch maintained the original morphology and C-type of crystalline after ultrasound treatment (UT), but 4 h or more of HMT and HMT assisted by UT changed the crystalline from C-type to A-type. All treatments decreased the crystallinity, molecular weight, swelling power and solubility at 70-90 °C, and elevated the content of resistant starch. Moreover, HMT assisted by pretreatment of UT was found to increase the viscosity and high-temperature stability of starch paste compared with others by the orderly combined effect of UT-induced depolymerization and HMT-induced depolymerization and rearrangement of starch chains. These results may promote the appropriate use of ultrasound in food industries and the production of starch materials for potential applications.


Assuntos
Digestão , Pisum sativum/química , Amido/química , Temperatura Alta , Solubilidade , Viscosidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA